главную роль играли сначала излучение, затем вещество. Но плотность излучения и вещества снижается по мере их распределения по объему все расширяющейся Вселенной. С другой стороны, плотность темной энергии остается постоянной, несмотря на расширение. За то время, пока Вселенная достигла своего нынешнего возраста, плотность энергии в виде излучения и материи уменьшилась настолько, что на передний план вышла темная энергия, которая не «растекается» по растущему объему и не снижает своей плотности. Несмотря на невероятно низкую плотность темной энергии, когда?нибудь она обязательно должна была перехватить лидерство. И вот после 10 млрд лет все более медленного расширения Вселенная наконец почувствовала влияние темной энергии и начала увеличивать скорость расширения. Со временем во Вселенной не останется ничего, кроме энергии вакуума, а ее расширение достигнет соответствующей скорости (рис. 77). Возможно, эта «кроткая» энергия и не будет определять развитие Земли, но Вселенную она, скорее всего, действительно получит в свое распоряжение.
РИС. 77. Вселенная в разное время своего существования расширялась по–разному. В инфляционной фазе она расширялась экспоненциально. После окончания инфляции началось расширение, соответствующее традиционной теории Большого взрыва. Теперь темная энергия заставляет скорость расширения вновь увеличиваться
Темная энергия и скрытая масса говорят о том, что мы не так уж преуспели в разгадке эволюции Вселенной, несмотря на невероятное совпадение космологической теории и ее прогнозов с экспериментальными данными. Большую часть Вселенной составляет нечто такое, о сущности и составе чего мы не можем ничего сказать. Лет через 20, может быть, наше сегодняшнее невежество будет вызывать лишь улыбку.
И это не единственная загадка, связанная с энергией Вселенной. Величина темной энергии, в частности, на самом деле представляет собой всего лишь «хвост» куда более значительной загадки: почему энергия, которая пронизывает всю Вселенную, так мала? Если бы ее суммарная величина была больше, она гораздо раньше по ходу эволюции Вселенной взяла бы верх над веществом и излучением, и структура Вселенной (и, естественно, жизнь в ней) не успела бы сформироваться. Кроме того, никто не знает, откуда раньше взялась огромная плотность той же энергии, запустившая и питавшая инфляционные процессы. Но самая крупная проблема, связанная с энергией Вселенной, — это проблема космологической постоянной.
Если исходить из квантовой механики, объем темной энергии должен был бы составлять куда большую величину и в инфляционный период, и сегодня. Квантовая механика учит нас, что вакуум — состояние, в котором нет постоянных частиц — на самом деле заполнен эфемерными частицами, которые то возникают, то исчезают вновь. Эти короткоживущие частицы могут обладать любой энергией — иногда настолько большой, что гравитационными эффектами от присутствия такой частицы уже нельзя пренебречь. Высокоэнергетические частицы придают вакууму необычайно большую энергию — намного большую, чем позволяет долгая эволюция Вселенной. Чтобы Вселенная выглядела именно так, как сейчас, объем энергии вакуума должен быть фантастически — на 120 порядков (!) — меньше, чем можно было бы ожидать исходя из законов квантовой механики.
Существует и еще один вопрос, связанный с этой задачей. Случайно ли мы живем именно в такое время, когда плотности энергии, связанной с веществом, скрытой массой и темной энергией, сравнимы между собой? Конечно, сейчас темная энергия преобладает над веществом, но менее чем втрое. Имея в виду, что все три вида энергии имеют принципиально разное происхождение и любой из них мог бы взять верх над остальными, тот факт, что их плотности близки, представляется чрезвычайно загадочным. Странность такого совпадения особенно заметна потому, что так дело обстоит только в наше время (грубо