темной материи и ее свойствах — данных, которые, возможно, удастся получить на БАКе — мы не сможем установить, действительно ли скрытая масса представляет собой WIMP. Именно для этого, кстати говоря, и нужны экспериментальные исследования.

СКРЫТАЯ МАССА И БАК

Интригующая возможность получить образец темной материи — одна из главных причин, по которым космологов интересует физика масштаба слабого взаимодействия и перспективы БАКа. Энергии, которые будут достигнуты на БАКе, как раз подходят для поиска WIMP. Если скрытая масса в самом деле состоит из частиц, связанных с масштабом слабого взаимодействия, как позволяют предположить расчеты, не исключено, что эти частицы действительно удастся получить на женевском коллайдере.

Однако даже в этом случае нет никакой гарантии, что частицы темной материи будут обнаружены. В конце концов, темная материя почти не вступает во взаимодействие с частицами Стандартной модели, а потому получить ее непосредственно в коллайдере или обнаружить при помощи детектора наверняка не удастся. Даже если нужная частица будет получена, она пролетит через детектор насквозь и не оставит никаких следов. Тем не менее отчаиваться рано, даже если частица скрытой массы улизнет от нас. Любое решение проблемы иерархии будет связано с другими частицами, большинство из которых взаимодействуют гораздо активнее. Некоторые из них, возможно, удастся получить не один раз, а при их распаде, опять же возможно, получится частица темной материи, которая затем улетит, унося с собой часть импульса и энергии.

Лучше всего из моделей слабого масштаба, о которых идет речь и которые могут естественным образом содержать достойного кандидата на роль темной материи, изучены на данный момент суперсимметричные модели. Если суперсимметрия действительно применима к нашему миру, то вполне возможно, что именно легчайшая суперсимметричная частица LSP и составляет темную материю. Эта легчайшая частица, несущая нулевой электрический заряд, взаимодействует слишком слабо и возникает сама по себе слишком редко, чтобы ее можно было обнаружить. Однако глюино, суперсимметричные партнеры переносчиков сильного взаимодействия глюонов, и скварки, суперсимметричные партнеры кварков, по идее должны возникать, если они в принципе существуют и находятся в подходящем диапазоне масс. Как уже обсуждалось в главе 17, обе эти суперсимметричные частицы в конце концов должны распадаться с образованием LSP. Так что, несмотря на то что частицы темной материи не получится создать непосредственно, они должны все же возникать при распаде других, более часто встречающихся частиц с достаточной частотой, чтобы их можно было обнаружить.

Другие гипотезы о темной материи в слабом масштабе, имеющие проверяемые следствия, придется разрабатывать примерно так же. Масса частицы, составляющей темную материю, так или иначе должна лежать в диапазоне слабого взаимодействия, изучением которого займется БАК. Эти частицы не удастся получить непосредственно из?за их слабой активности, но многие модели предусматривают существование других частиц, которые должны распадаться, образуя именно темные частицы. В этом случае нам, возможно, удастся убедиться в существовании частицы темной материи, а также узнать ее массу по недостающему импульсу.

Обнаружение темной материи на БАКе было бы, безусловно, серьезным достижением. Ученые смогли бы подробно исследовать хотя бы некоторые из ее свойств. Однако для того, чтобы по– настоящему убедиться в том, что обнаруженная частица в самом деле составляет темную материю, потребуются дополнительные доказательства, которые нам, может быть, помогут получить наземные и космические детекторы.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату