движется вперед, а с другой — самым жестким образом проверяет любые свои выводы. Творческий человек должен верить, что он может добиться многого, и при этом постоянно помнить о тех, у которых ничего не получилось.

Выдвигая смелые, подчас даже авантюрные идеи, ученые иногда очень неохотно представляют их миру. Известнейшие ученые Исаак Ньютон и Чарльз Дарвин много лет не решались поделиться с окружающими своими революционными идеями. Исследования Дарвина растянулись на десятилетия, и книга «Происхождение видов» вышла лишь после громадного количества наблюдений. Ньютоновы «Начала» представили теорию всемирного тяготения, на разработку которой у автора ушло больше десяти лет. Ньютон не публиковал трактат, пока не получил достаточных доказательств того, что тела произвольной геометрической формы (не только точечные) тоже притягиваются с силой, обратно пропорциональной квадрату расстояния. Именно в процессе доказательства этого закона Ньютон разработал методы дифференциального и интегрального исчисления.

РИС. 81. Задача: не отрывая карандаша от бумаги, соединить девять точек четырьмя отрезками прямой

Иногда требуется заново сформулировать проблему, чтобы увидеть ее в новом свете и заново определить границы, а затем найти решение там, где на первый взгляд никакого решения и быть не может. Для успеха начатой работы нередко очень важны упорство и вера — не в бога, а в то, что решение все?таки существует. Истинные ученые — и вообще творческие люди — никогда не останавливаются, оказавшись в тупике. Если проблема не решается одним способом, они пробуют решить ее иначе. Если впереди непреодолимое препятствие, они роют тоннель, ищут другое направление или поднимаются в воздух и составляют карту местности. Именно здесь вступает в игру воображение. Чтобы продолжать, мы должны верить в то, что ответ реально существует, а мир изначально логичен, и эту логику мы в конце концов обязательно обнаружим. Посмотрев на проблему под верным углом, можно заметить связи, которые в противном случае обязательно пропустишь.

В качестве иллюстрации можно привести известную задачу, в которой требуется, не отрывая карандаша от бумаги, соединить девять точек четырьмя отрезками прямой (рис. 81). Если держаться в пределах образованного точками квадрата, решения у задачи не существует, но ведь никто не задавал вам такого ограничения! Стоит выйти за пределы квадрата, и решение появляется (рис. 82). В этот момент вам, возможно, придет в голову, что проблему можно переформулировать еще несколькими способами. Если точки будут большими, можно ограничиться тремя линиями. Если сложить бумагу (или воспользоваться очень широким пером, как предложила создателю задачи одна маленькая девочка), хватит и одной линии.

РИС. 82. Возможные креативные решения задачи о девяти точках включают вариант выхода за пределы квадрата, складывание бумаги так, чтобы точки сошлись на одной прямой, и использование широкого пера или грифеля

Эти решения — не обман и не нарушение правил. Правда, они были бы обманом, если бы в задаче имелись дополнительные ограничения. К сожалению, система образования зачастую загоняет мышление в жесткие рамки, когда человек сам отсекает «лишние» возможности. В книге «Кварк и ягуар» (The Quark and the Jaguar) Мюррей Гелл–Манн цитирует «историю про барометр» профессора физики Вашингтонского университета Александра Каландры. Суть истории такова: преподаватель, сомневаясь в оценке, задал студенту вопрос о том, как можно измерить высоту здания при помощи барометра. Студент ответил, что можно привязать барометр к веревке и спустить с крыши на землю, а затем измерить длину веревки. Когда преподаватель возразил, что решение должно быть основано на законах физики, экзаменуемый предложил измерить время падения барометра с крыши или длину тени от барометра и от здания в заданное время дня. Студент предложил также один нефизический способ: пойти к коменданту и предложить ему барометр в обмен на информацию о высоте здания. Возможно, это были не те ответы,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату