вариации входных параметров и связанных с ними рисков. Исход будет представлен в виде таблицы, показывающей частоту каждого из возможных результатов.
Суть моделирования по методу Монте-Карло состоит в том, чтобы создать набор случайных чисел для каждой из ключевых переменных. Для статистических расчетов входных параметров следует принять во внимание прежний опыт, исследования рынка и суждения управленческой команды. Затем случайные цифры помещаются в таблицу для анализа и рассчитывается исход (показатели IRR и NPV); определяется новый набор случайных чисел, основанный на статистических функциях для каждой входной переменной, и вновь рассчитывается возможный исход. Этот процесс повторяется много раз, что в итоге позволяет создать распределение различных исходов.
Для проведения расчетов по методу Монте-Карло есть целый ряд готовых программных продуктов, таких как Palisades@RISK и Crystal Ball. Они просты в использовании: сначала нужно выбрать конкретные ячейки, а затем определить возможные пределы для каждой переменной. После этого программа случайным образом меняет (в заданных пределах) значения в выбранных клетках. Исход (IRR или NPV) автоматически рассчитывается для огромного количества циклов, после чего создается совокупный статистический отчет о возможных исходах.
На рис. 5.5 приведен пример расчета по методу Монте-Карло для данных из табл. 5.6 и 5000 случайных вариантов входных переменных. При расчете одновременно менялись параметры общих расходов на проект, роста доли рынка и размера заказа. Функции соответствовали нормальному распределению, а стандартное отклонение определялось примерным значением лучшего и худшего сценариев для каждой переменной. Средняя величина NPV, или ожидаемая ценность, составила 171 тысячу долларов при величине стандартного отклонения в 153 тысячи.
А главное – все показатели могут меняться прямо на экране. Вы видите, как клетки в модели перемещаются, а через пару минут появляется «ответ» (примерно такой же, как на рис. 5.5). Я проводил подобные симуляции в рамках программ для руководителей и их клиентов ряда компаний, и аудитория была в восторге. С помощью программы @RISK я осуществлял расчеты по модели, сходной с моделью в табл. 5.6, не более чем за 10 минут, и окружающим я казался гением!
Главное достоинство этого подхода в том, что можно «видеть» лучший, худший и ожидаемый исходы для ROMI, а также рассчитать вероятность их наступления. Для данного примера есть 12,8 %-ная вероятность того, что NPV окажется отрицательным, а IRR – меньше минимальной ставки доходности (рис. 5.5). Руководство компании может задать себе непростой вопрос: допустим ли подобный уровень риска, – а затем выбрать стратегию, способную снизить будущие риски за счет изменения входных параметров.
Рис. 5.5. Пример моделирования по методу Монте-Карло для расчета ROMI при запуске нового продукта.
Шаблон модели можно загрузить на странице www.agileinsights.com/ROMI, а на сайте www.palisade.com есть программа @RISK Monte Carlo, которой можно бесплатно пользоваться в течение 10 дней
В этой главе я показал несколько примеров анализа финансового ROMI (он применим более чем для половины видов маркетинговой деятельности). В них используются четыре основных финансовых показателя для маркетинга: прибыль, NVP, IRR и окупаемость. У вас есть шаблон для расчета ROMI для конкретной кампании, направленной на формирование спроса, и программы запуска нового продукта. Методика, приведенная на рис. 5.3, отражает системный подход, позволяющий собрать основные входные параметры для шаблона и рассчитать ROMI.
Также я показал, как нужно интерпретировать ответы и принимать решение о финансировании на базе основных финансовых показателей. Как только кампания завершится, нужно «провести учет»: включить в модель реальные результаты и оценить эффективность проделанной работы.
Когда речь заходит о цифрах и расчетах перед началом кампании, можно быть уверенным лишь в одном: все эти цифры будут в той или иной степени неверны. Я никогда не встречал кампании, результаты которой в точности соответствовали изначальным расчетам финансового ROMI. Почему? Мир изменчив и полон рисков. Поэтому при расчете ROMI всегда нужно отвечать на вопросы: «Каковы возможные сценарии развития событий – лучший, ожидаемый и худший?»; «Какие предположения мы делаем, составляя модель, и как изменится ответ при модификации входных параметров?». Анализ чувствительности – основной инструмент, позволяющий найти ответы для любой величины финансового ROMI и завоевать расположение совета директоров.
Выводы
• Прибыль (показатель № 6) – основной показатель, которым необходимо управлять, если вы стремитесь к устойчивому развитию.