противоположной универсальной способности „не быть“, отсутствовать. Скорее предполагает. То же самое относится и к рождению с уничтожением (тоже, кстати, противоположности). Рождение предполагает уничтожение. Более того, рождение чего-то всегда есть уничтожение небытия этого чего-то. И наоборот. А небытие чего угодно всегда и бытие этого же самого небытия.

Словом, наличие противоположных универсалий у всего во Вселенной само является универсалией. Это, кстати, и есть один из законов диалектики, один из столпов диалектического мышления. Как заметил просвещённый читатель, универсалии на проверку оказываются ещё и категориями диалектики[56], не желающей (вроде бы) поддаваться математической формализации…» (Куликов, Гаврилов, 2009–2012, 2009, № 2).

Между тем имя для переходов материи из одного состояния в другое, всевозможных видов преобразований и изменений придумано давно. Физики называют их операторами (Куликов, Ёлкин, 2005).

Здесь мы проведём одну аналогию и да простят нам великие, что упоминаем их иной раз в собственных целях.

Гениальный английский инженер и физик Оливер Хевисайд посвятил молодые годы изучению теории Максвелла и расчистке его трактатов, для этого он не только изучил имеющийся инструментарий моделирования, но и разработал собственный:

«Прежде всего следовало овладеть математическим аппаратом — изучить дифференциальное и интегральное исчисления, дифференциальные уравнения в частных производных и многое другое. С этой задачей Хевисайд успешно справился. За очень короткое время он в совершенстве изучил все необходимые для него разделы математики (это само по себе вызывает почтительное удивление), а в дальнейшем даже создал две новые области математической физики — векторное исчисление, включая векторный анализ, и операционное исчисление. Теперь начала векторного исчисления преподают в школьном курсе математики и физики, но в то время, около ста лет назад (1880-е годы), хотя понятие вектора и было известно, практически никто не использовал это понятие для описания физических явлений.

Работы Хевисайда по операционному исчислению первоначально не получили признания математиков. Хевисайд был самоучка. Он не учился в университете (и даже в средней школе последней ступени), не слушал лекций, не посещал семинарских занятий, т. е. не прошел того пути, на котором воспитывалось подавляющее большинство английских ученых. Все свои знания он добыл без помощи преподавателей. Но обучение в университете давало не только научные знания. Обучение было одновременно и воспитанием в духе научных традиций, и введением в научное сообщество. Человек, окончивший Кембриджский или Оксфордский университет, уже в силу только этого факта мог рассчитывать на внимательное отношение к себе и к своим научным результатам со стороны многих и многих ученых, прошедших ту же школу, тот же путь научного воспитания. Если научные результаты не вызывали сомнения, они получали безоговорочную поддержку, если результаты вызывали возражения, автор мог рассчитывать на доброжелательную критику. Он был равноправным членом научного сообщества.

Хевисайд не вошёл в научное сообщество, как теперь говорят, „не вписался“. Его подход к проблеме был нетрадиционным, непривычным для членов научного сообщества и столь же непривычной была манера изложения полученных результатов. Занимаясь в полном уединении, он выработал свой стиль выбора и рассмотрения научной проблемы, и этот стиль был в некоторых отношениях далёк от обыденного и привычного. Он создал свой язык и свою систему образов в науке, и они тоже отличались от традиционных. Поэтому его работы было трудно читать. Иногда труднее было понять, в чем заключается утверждение Хевисайда, чем убедиться в справедливости этого утверждения.

Нужно еще помнить, что Хевисайд работал, как теперь говорят, „на переднем крае науки“, он занимался новыми для своего времени проблемами. В таких случаях всегда можно требовать соблюдения традиций в научном подходе. Бывает так, что при изучении нового класса явлений традиционный научный подход оказывается несостоятельным и тогда зарождается новая традиция. Современники не всегда могут это увидеть и оценить. Несомненно, что и Максвелл при жизни не получил того признания, какого он достоин за свою электромагнитную теорию…» (Болтовский, 1985).

Создатели Диала используют методологический аппарат диалектики и теорию симметрий для упорядочения вполне прикладной отрасли — теории творчества, а операторы понимаются нами, как своего рода интеллектуальные рычаги. Нет сомнений, что части наших коллег, объединённым много лет в ассоциации и иные институты, это может показаться «диким», противоречащим всему тому, к чему они привыкли и что преподают. Поэтому здесь особо оговаривается, что к явлениям, изучаемым в рамках «науки о творчестве», сознательно применён несвойственный для неё инструментарий, зарекомендовавший себя в иных отраслях знания.

Различение и неразличённость контекста

Центральным для такого подхода является понятие различения и неразличённости (безразличия). Если для нас чего-то «нет», это вовсе не означает, что этого «нет и не может быть вообще».

А всего лишь значит, что мы не обладаем информацией, не владеем контекстом, не различаем это «чего-то» в хаосе прочих сведений и событий, то есть у нас полный и абсолютный ноль знаний.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату