включения одного множества в состав другого или «взятие множества от множества». (Это вам ничего не напоминает? Правильно — вездесущую рекурсию!)

Можно включать какие угодно множества в состав одного — их объединяющего, до тех пор пока все множества не исчерпаются. Тогда мы получим сверхмножество, которое включает в себя все остальные множества. Все! Но не все! Само сверхмножество (множество всех множеств) оказалось не включённым! Ведь его вначале не было, а теперь оно появилось. Ну что же, включим теперь и его. Но тогда появляется новое сверхмножество, которого только что ещё не было. Тогда и его включим, и так до бесконечности! То есть множество всех множеств и существует, и не существует одновременно!

Причиной парадокса является возможность быть множеству элементом самого себя. Можно конечно ограничить эту возможность, но тогда исчезнут многие очень полезные возможности теории множеств. Лучше локализовать проблему, и для этого разделить все множества на два типа, те, которые содержат себя в качестве своего элемента, и те, которые не содержат..

В 1901 году Бертран Рассел в письме коллеге изложил мысль, которая в популярной форме известна как «Парадокс брадобрея»: «В одной военной части был брадобрей. Ему было разрешено под угрозой смертной казни брить только тех военнослужащих, которые не бреются сами. Но вот беда — сам брадобрей тоже был на службе. Мог ли он в таком случае побриться сам?»

Если он себя побреет, то окажется тем, кого ему брить категорически запрещено, а если не побреет, то окажется среди тех, кого брить ему можно!

Словом, в теории множеств выявилось много противоречий[92], а на их устранение потратили огромное количество усилий. Собственно, как и в случае с математическим анализом, который первоначально был противоречив и только трудами титанов — Коши, Вейерштрасс, Гейне — приведён в образцовое состояние. В условно образцовое. Ибо все противоречия математического анализа были упрятаны в его определения, совмещающие в себе невозможное. Достаточно вспомнить бесконечно малые и бесконечно большие величины, которые «куда-то стремятся, но никогда своего предела не достигают». При этом само стремление к пределу происходит вне времени, что невозможно само по себе — в природе такое не наблюдается.

ВОПРОС № 98

Сколько яблок на рисунке?[93]

Детский парадокс

В математике имеется огромное число парадоксов и противоречий. Никто даже не знает сколько — так велика математика! Кстати, это обстоятельство ничуть не мешает нам её любить!

Тем нашим читателям, у кого подрастают дети, ещё предстоит хлебнуть из-за этой «парадоксальности»:

— Папа, существует ли самое большое число?

— Да, существует? — папа пытается отделаться от навязчивого почемучки.

— А что будет, если к нему прибавить единицу?

Очевидно, что ответ неудовлетворителен. Отец в затруднении.

— Нет, Не существует. Так как натуральный ряд стремится к бесконечности! — папа пытается продемонстрировать образованность.

— А можно это несуществующее число, ну, эту бесконечность, обозначить?

— Да, можно.

— А если отнять от этого не существующего числа единицу, мы получим существующее число?

— Нет!

— А если отнять от этого не существующего числа две единицы, мы получим существующее число?

— Нет!

<…>

— А если отнять от этого не существующего числа бесконечность натуральных чисел, мы получим существующее число? Ведь это бесконечности одинакового порядка!

— Э… Да! Получим.

— Тогда где, на каком числе несуществующее число превращается в существующее?

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату