отличаются потому, что их атомы содержат различное количество электронов, протонов и нейтронов. Существует ряд основных правил. В частности, две частицы обладают электрическими зарядами: электрон – «негативным», протон – «позитивным», нейтрон же заряда не имеет. Таким образом, чтобы суммарный заряд оказался нулевым, количество протонов и электронов должно совпадать. Самый простой из атомов – атом водорода – имеет один электрон и один протон. У гелия два протона и два нейтрона.

Химические свойства атома зависят от количества электронов, поэтому нейтронов можно добавлять сколько угодно: свойства вещества почти не изменятся. Вот именно что – «почти». Это слово обуславливает существование изотопов, то есть вариантов какого-либо элемента с почти неуловимыми отличиями. Например, атом самой распространённой формы углерода имеет 6 электронов, 6 протонов и 6 нейтронов, тогда как у его изотопов – от 2 до 16 нейтронов. Углерод-14, который археологи используют для датировки древних органических материалов, имеет 8 нейтронов. Атом обычной серы состоит из 16 электронов, 16 протонов и 16 нейтронов, при этом известно 25 её изотопов.

Электроны имеют особенно важное значение для химических свойств атома, поскольку находятся на внешней его оболочке и могут вступать в контакт с другими атомами, образуя молекулы. Протоны и нейтроны группируются в центре атома, формируя его ядро. Ранее считалось, что электроны движутся вокруг ядра по орбитам, словно планеты вокруг Солнца. Затем эта модель была заменена другой, в которой электрон был представлен в виде смазанного вероятностного облака, демонстрируя нам не место, где находится частица в данный момент, а то, где она, возможно, будет находиться, если вы за ней понаблюдаете. В настоящее время такая картинка также считается чрезмерным упрощением некой чрезвычайно сложной математической модели, согласно которой электрон одновременно находится везде и нигде.

Эти три частицы (электрон, протон и нейтрон) связывают физику и химию. С их помощью была расшифрована вся таблица химических элементов – от простого водорода и наиболее сложного природного элемента калифорния до куда более странных короткоживущих синтезированных элементов. Всё, что требуется, чтобы вполне определить материю во всём богатстве её разнообразия, – это коротенький список «фундаментальных» частиц, то есть таких, которые невозможно расщепить на более мелкие. Вроде бы просто и понятно.

Не тут-то было. Во-первых, для объяснения целого ряда экспериментальных наблюдений на микроуровне потребовалось изобретение квантовой механики. Затем обнаружились новые фундаментальные частицы вроде фотона (частица света) или нейтрино (электрически нейтральная частица, которая настолько мало взаимодействует с остальным веществом, что может свободно пройти сквозь тысячемильную толщу свинца). Бесчисленные нейтрино, испущенные Солнцем в ходе ядерных реакций, постоянно проходят сквозь Землю, в том числе и сквозь нас с вами, не оказывая никакого влияния.

Нейтрино и фотоны были лишь началом. Уже через несколько лет количество фундаментальных частиц превысило количество химических элементов, что вызвало лёгкую панику, так как объяснение становилось куда сложнее явления, которое физики пытались объяснить. Впрочем, в конце концов они выяснили, что некоторые частицы фундаментальнее других. К примеру, протон состоит из трёх частиц помельче, называемых кварками. То же самое касается и нейтрона, хотя комбинация кварков в нём иная. Как бы то ни было, электроны, нейтрино и фотоны остаются фундаментальными частицами. Насколько нам известно, они не делятся на более простые составляющие.[5]

Одной из главных причин создания БАКа был поиск последнего недостающего звена так называемой стандартной модели, которая, несмотря на непритязательное название, похоже, объясняет почти всё в физике элементарных частиц. Предъявляя веские доказательства, сторонники этой модели настаивают, что атомы состоят из 16 истинно фундаментальных частиц. Шесть из них – кварки, имеющие совершенно дикие названия: нижний/верхний, странный/очарованный, прелестный/истинный. Нейтрон состоит из одного «верхнего» кварка и двух «нижних»; протон – из одного «нижнего» и двух «верхних».

Следующие шесть – лептоны – также состоят из трёх пар: электронов, мюонов и таонов (тау-лептонов), каждый со своим собственным нейтрино. Оригинальное нейтрино теперь называется электронным нейтрино и идёт в паре с электроном. Все двенадцать частиц (кварки и лептоны) в совокупности носят название фермионов, данное им в честь великого итальянского физика Энрико Ферми.

Оставшиеся четыре частицы связаны с физическими силами, которые удерживают всю материю вместе. Физики различают следующие основные природные силы: гравитация, электромагнетизм, сильное ядерное взаимодействие и слабое ядерное взаимодействие. Гравитация не играет особенной роли в стандартной модели, поскольку не вписывается в квантово-механическую картину мира. Остальные три силы связаны с особыми частицами, известными как бозоны. Своё название они получили в честь индийского физика Сатьендры Ната Бозе (Шотендроната Бошу). Разница между бозонами и фермионами принципиальна: у них различные статистические свойства.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату