Glazier J A, Zhang Y, Swat M, Zaitlen B, Schnell S. Coordinated action of N-CAM, N-cadherin, EphA4, and ephrinB2 translates genetic prepaterns into structure during somitogenesis in chick. Curr Top Dev Biol. 2008; 81:205–47.
87
Dubrulle J, McGrew MJ, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell. 2001; 106:219–32.
88
Naiche LA, Holder N, Lewandoski M. FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proc Natl Acad Sci U S A. 2011; 108:4018– 23.
89
Aulehla A, Pourquie O. Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol. 2010; 2:a000869.5.
90
J. Cooke, E. C. Zeeman. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Teor Biol, 1976; 58:455–76.
91
Saga Y. The mechanism of somite formation in mice. Curr Opin Genet Dev. 2012 June 26. [Epub ahead of print]
92
Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquie O. Control of segment number in vertebrate embryos. Nature. 2008; 454:335–9.
93
Lynch VJ, Roth JJ, Wagner GP. Adaptive evolution of Hox-gene homeodomains after cluster duplications. BMC Evol Biol. 2006; 6:86.