Итак, наша Вселенная, возможно, родилась при отскоке из предыдущей фазы, пройдя через промежуточную – когда не было ни пространства, ни времени.

Физика распахивает окна, через которые мы смотрим в дальнюю даль. То, что мы видим, не перестает нас изумлять. Мы понимаем, что полны предубеждений и что наше интуитивное видение мира неполное, ограниченное, неправильное. Земля не плоская, не неподвижная. Мир продолжает меняться на наших глазах, по мере того как мы всматриваемся в него – и постепенно начинаем видеть его все четче и все в больших подробностях. Если сложить то, что мы узнали о физическом мире в XX столетии, станет ясно, что все подсказки указывают на нечто в корне отличное от нашего интуитивного понимания материи, пространства и времени. Петлевая квантовая гравитация – попытка разгадать эти подсказки и заглянуть еще чуть дальше.

Этюд шестой

Вероятность, время и теплота черных дыр

Наряду с важнейшими теориями, о которых я уже говорил и которые описывают базовые составляющие мира, есть другой внушительный бастион физики, несколько отличающийся от остальных. К его воздвижению неожиданно привел единственный вопрос: что такое теплота?

До середины XIX века физики пытались истолковать теплоту, мысля ее своего рода жидкостью, называемой «теплород», или двумя жидкостями, одной горячей и одной холодной. Это представление оказалось неверным. В конце концов Джеймс Максвелл и австрийский физик Людвиг Больцман все поняли. И то, что они поняли, очень красиво, странно и значительно – и переносит нас в области, до сих пор во многом не исследованные.

Они начали понимать, что горячее вещество – не то, которое содержит теплород. Горячее вещество – то, в котором быстрее движутся атомы. Атомы и молекулы – небольшие скопления атомов, связанных между собой, – всегда в движении. Они носятся, колеблются, отскакивают и так далее. Холодный воздух – тот, в котором атомы, а точнее молекулы, движутся медленнее. Горячий – тот, в котором молекулы движутся быстрее. Изумительно просто. Но это не все.

Теплота, как мы знаем, всегда передается от горячих объектов холодным. Холодная чайная ложка, помещенная в чашку горячего чая, тоже становится горячей. Если мы неподобающе оденемся в морозный день, то быстро потеряем тепло своего тела и замерзнем. Почему же теплота переходит от горячих объектов к холодным, но не наоборот?

Это важнейший вопрос, поскольку он имеет отношение к природе времени. В каждом случае, когда теплообмен не происходит или когда он пренебрежимо мал, мы видим, что будущее ведет себя точно так же, как прошлое. Например, для движения планет Солнечной системы теплота практически не имеет значения, и, собственно, это самое движение могло бы с таким же успехом происходить в обратную сторону, не нарушая ни единого закона физики. Но как только появляется теплота, будущее начинает отличаться от прошлого. Скажем, в отсутствие трения маятник может качаться бесконечно долго. Если бы мы засняли это на видео и проиграли его в обратном направлении, то увидели бы абсолютно правдоподобное движение. Но если есть трение, маятник понемногу нагревает свою опору, теряет энергию и замедляется. Трение производит тепло. И мы немедленно оказываемся способны отличить будущее (в котором маятник все больше замедляется) от прошлого. Никто никогда не видел, чтобы маятник стал раскачиваться из состояния покоя, начав движение за счет энергии, полученной поглощением тепла от опоры. Разница между прошлым и будущим существует, только когда есть теплота. Принципиальное явление, отличающее будущее от прошлого, – это переход тепла от более горячего к более холодному.

Итак, еще раз: почему с течением времени тепло передается от горячих объектов к холодным, а не в противоположном направлении?

Причину открыл Больцман, и она удивительно проста: это чистая случайность.

Идея Больцмана элегантна и задействует понятие вероятности. Тепло переходит от горячих предметов к холодным не по непреложному закону, а просто с большой вероятностью. Поскольку статистически более вероятно, что быстро движущийся атом горячего вещества столкнется с атомом холодного и оставит ему немного своей энергии, чем наоборот. Энергия сохраняется при столкновениях, но стремится распределиться в более или менее равных долях, когда столкновений много. В результате температура объектов, находящихся в контакте друг с другом, имеет свойство сравниваться. Это не невозможно, чтобы горячее тело стало еще горячее в соприкосновении с более холодным, а просто крайне маловероятно.

Такое введение вероятности в самое сердце физики и использование этого понятия, чтобы объяснить основы динамики тепла, поначалу сочли нелепыми. Никто не воспринял Больцмана всерьез, как это часто случается. Пятого сентября 1906 года в Дуино близ Триеста он покончил с собой: повесился, так и не увидев, как обоснованность его идей получила в дальнейшем всеобщее признание.

Во второй главе я говорил о том, как квантовая механика предсказывает, что движение всякого мельчайшего объекта определяется случайностью. Это также пускает в ход вероятность. Однако вероятность, рассматривавшаяся Больцманом, вероятность в основе теплоты, имеет иную природу и не

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату