Но что якобы простое суммирование на самом деле содержит в себе умножение, следовательно, переход из линейного в плоскостное определение, это проще всего обнаруживается в том способе, каким например показывают, что площадь трапеции равна произведению суммы ее двух параллельных сторон на половину высоты. Эту высоту представляют себе лишь как численность некоторого множества дискретных величин, которые должны быть суммированы. Эти величины суть линии, лежащие параллельно между теми двумя ограничивающими трапецию параллельными линиями; их бесконечно много, ибо они должны составлять площадь, но они суть линии, которые, следовательно, для того, чтобы быть чем-то плоскостным, должны быть вместе с тем положены с отрицанием. Чтобы избегнуть трудности, заключающейся в том, что сумма линий должна дать в результате плоскость, линии сразу же принимаются за плоскости), но равным образом за бесконечно- тонкие, ибо они имеют свое определение исключительно в линейном элементе (in dem Linearen) параллельных границ трапеции. Как параллельные и ограниченные другой парой прямолинейных сторон трапеции они могут быть представлены как члены арифметической прогрессии, разность которой остается вообще той же самой, но не обязательно должна быть определена, а первый и последний член которой суть указанные две параллельные линии; сумма такого ряда равна, как известно, произведению этих параллельных линий на половинную численность членов. Это последнее определенное количество называется численностью лишь совершенно относительно, лишь сравнительно с представленном о бесконечно-многих линиях; оно есть вообще определенность величины некоторого непрерывного — высоты. Ясно, что то, что называется суммой, есть вместе с тем ductus lineae in lineam, умножение линейного на линейное; согласно вышеуказанному определению — возникновение плоскостного. В простейшем случае, в прямоугольнике вообще, каждый из множителей ab есть некоторая простая величина; но уже в дальнейшем, все еще элементарном примере трапеции лишь один множитель есть простая величина половины высоты, другой же, напротив, определяется через прогрессию; он тоже есть некоторое линейное, но такое линейное, определенность величины которого оказывается более запутанной; поскольку она может быть выражена лишь посредством ряда, постольку интерес к ее суммированию называется аналитическим, т. е. арифметическим; геометрическим же моментом является здесь умножение, качественный переход от линейного измерения к плоскостному; один из множителей принимается за дискретный лишь в целях арифметического определения другого, а сам по себе он подобно последнему есть величина некоторого линейного.

Прием, состоящий в том, чтобы представлять площадь как сумму линий, употребляется, однако, часто и тогда, когда не имеет места с целью достижения результата умножение как таковое. Это совершается в тех случаях, когда дело идет о том, чтобы найти величину, как определенное количество, не из уравнения, а из пропорции. Известен, например, способ доказательства, что площадь круга относится к площади эллипса, большая ось которого равна диаметру этого круга, как большая ось к малой, — способ, состоящий в том, что каждая из этих площадей принимается за сумму принадлежащих ей ординат; каждая ордината эллипса относится к соответствующей ординате круга, как малая ось к большой, из чего заключают, что так же относятся между собою и суммы ординат, т. е. площади. Те, которые при этом желают избегнуть представления о площади как сумме линий, превращают с помощью обычного, совершенно излишнего искусственного приема ординаты в трапеции бесконечно малой ширины; так как здесь уравнение есть лишь пропорция, то при этом сравнивается лишь один из двух линейных элементов площади. Другой элемент площади — ось абсцисс — принимается в круге и эллипсе за равный, следовательно, как множитель арифметического определения величины, за 1, и поэтому пропорция оказывается всецело зависящей только от отношения одного определяющего момента. Для представления площади требуются два измерения; но определение величины, как оно дается в этой пропорции, касается только одного момента; поэтому та оказываемая представлению поблажка или помощь, которая состоит в том, что к этому одному моменту присоединяется представление суммы, есть, собственно говоря, непонимание того, что здесь требуется для математической определенности.

Данные здесь пояснения доставляют также критерий оценки вышеупомянутого метода неделимых, созданного Кавальери; метод этот также находит свое оправдание в данных нами пояснениях, и ему нет надобности прибегать к помощи бесконечно-малых. Эти неделимые суть линии, когда Кавальери рассматривает площади, или они суть квадраты, площади кругов, когда он рассматривает пирамиду или конус, и т. д.; принимаемую за определенную основную линию или основную площадь он называет правилом. Это — константа, а по своему отношению к ряду это — его первый или последний член; неделимые рассматриваются как параллельные ей, следовательно, как находящиеся в одинаковом определении по отношению к фигуре. Общее основоположение Кавальери состоит в том (Exerc. Geometr. VI — позднейшее сочинение Exerc. I, стр. 6), что «все как плоские, так и телесные фигуры относятся друг к другу, как все их неделимые, причем эти неделимые сравниваются (55) между собой совокупно, а если у них есть какая-либо общая пропорция, то в отдельности». — Для этой цели он в фигурах, имеющих равные основания и высоты, сравнивает пропорции между линиями, проведенными параллельно основанию и на равном расстоянии от него; все такие линии некоторой фигуры имеют одинаковое определение и составляют весь ее объем. Таким образом Кавальери доказывает, например, и ту элементарную теорему, что параллелограмы, имеющие одинаковую высоту, относятся между собою, как их основания; каждые две линии, проведенные в обеих фигурах на одинаковом расстоянии от основания и параллельные ему, относятся между собою, как основания этих фигур; следовательно, так же относятся между собою и целые фигуры. В действительности линии не составляют объема фигуры как непрерывной, а составляют этот объем, поскольку он должен определяться арифметически;

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату