hydrogenotrophic methanogenic Archaea // Proceedings National Academy Sciences USA 108: 2981–2986 (2011).
Thauer, R. K. A novel mechanism of energetic coupling in anaerobes // Environmental Microbiology Reports 3: 24– 25 (2011).
Глава 5. Появление сложных клетокРазмеры геномов
Cavalier-Smith, T. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion // Annals of Botany 95: 147–175 (2005).
Cavalier-Smith, T. Skeletal DNA and the evolution of genome size // Annual Review of Biophysics and Bioengineering 11: 273–301 (1982).
Gregory, T. R. Synergy between sequence and size in large-scale genomics // Nature Reviews in Genetics 6: 699– 708 (2005).
Lynch, M. The Origins of Genome Architecture. Sinauer Associates, Sunderland MA (2007).
Возможные ограничения размера генома у эукариот
Cavalier-Smith, T. Predation and eukaryote cell origins: A coevolutionary perspective // International Journal Biochemistry Cell Biology 41: 307–322 (2009).
Duve, C. de The origin of eukaryotes: a reappraisal // Nature Reviews in Genetics 8: 395–403 (2007).
Koonin, E. V. Evolution of genome architecture // International Journal Biochemistry Cell Biology 41: 298–306 (2009).
Lynch, M., and J. S. Conery The origins of genome complexity // Science 302: 1401–1404 (2003).
Maynard Smith, J., and E. Szathmary The Major Transitions in Evolution. Oxford University Press, Oxford. (1995).
Химерное происхождение эукариот
Cotton, J. A., and J. O. McInerney Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function // Proceedings National Academy Sciences USA 107: 17252–17255 (2010).
Esser, C., Ahmadinejad, N., Wiegand, C., et al. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes // Molecular Biology Evolution 21: 1643–1660 (2004).
Koonin, E. V. Darwinian evolution in the light of genomics // Nucleic Acids Research 37: 1011–1034 (2009).
Pisani, D., Cotton, J. A., and J. O. McInerney Supertrees disentangle the chimeric origin of eukaryotic genomes // Molecular Biology Evolution 24: 1752–1760 (2007).
Rivera, M. C., and J. A. Lake The ring of life provides evidence for a genome fusion origin of eukaryotes // Nature 431: 152–155 (2004).
Thiergart, T., Landan, G., Schrenk, M., Dagan, T., and W. F. Martin An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin // Genome Biology and Evolution 4: 466–485 (2012).
Williams, T. A., Foster, P. G., Cox, C. J., and T. M. Embley An archaeal origin of eukaryotes supports only two primary domains of life // Nature 504: 231–236 (2013).
Позднее происхождение брожения
Say, R. F., and G. Fuchs Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme // Nature 464: 1077–1081 (2010).
Стехиометрия накопления энергии
Hoehler, T. M., and B. B. Jorgensen Microbial life under extreme energy limitation // Nature Reviews in Microbiology 11: 83–94 (2013).
Lane, N. Why are cells powered by proton gradients? // Nature Education 3: 18 (2010).
Martin, W., and M. J. Russell On the origin of biochemistry at an alkaline hydrothermal vent // Phil. Trans. R. Soc. B 367: 1887–1925 (2007).
Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W., and R. Hedderich Methanogenic archaea: ecologically relevant differences in energy conservation // Nature Reviews Microbiology 6: 579–591 (2007).
Вирусная инфекция и клеточная смерть
Bidle, K. D., and P. G. Falkowski Cell death in planktonic, photosynthetic microorganisms // Nature Reviews Microbiology 2: 643–655 (2004).
Lane, N. Origins of death // Nature 453: 583–585 (2008).