domains Archaea, Bacteria, and Eucarya // Proceedings National Academy Sciences USA 87: 4576–4579 (1990).
Рис. 16. Sousa, F. L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I. A. C., Allen, J. F., Lane, N., and W. F. Martin Early bioenergetic evolution // Phil. Trans. R. Soc. B 368: 20130088 (2013).
Рис. 17. Sojo, V., Pomiankowski, A., and N. Lane A bioenergetic basis for membrane divergence in archaea and bacteria // PLOS Biology 12 (8): e1001926 (2014).
Рис. 19. Sojo, V., Pomiankowski, A., and N. Lane A bioenergetic basis for membrane divergence in archaea and bacteria // PLOS Biology 12 (8): e1001926 (2014).
Рис. 21. Thiergart, T., Landan, G., Schrenk, M., Dagan, T., and W. F. Martin An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin // Genome Biology and Evolution 4: 466–485 (2012).
Рис. 22. Williams, T. A., Foster, P. G., Cox, C. J., and T. M. Embley An archaeal origin of eukaryotes supports only two primary domains of life // Nature 504: 231–236 (2013).
Рис. 23. А – Б. Esther Angert, Cornell University. В – Г. Heide Schulz-Vogt, Leibnitz Institute for Baltic Sea Research, Rostock. См.: Lane, N., and W. Martin The energetics of genome complexity // Nature 467: 929–934 (2010); Schulz, H. N. The genus Thiomargarita // Prokaryotes 6: 1156–1163 (2006).
Рис. 24. Lane, N., and W. Martin The energetics of genome complexity // Nature 467: 929–934 (2010); Lane, N. Bioenergetic constraints on the evolution of complex life // Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a015982 CSHP (2014).
Рис. 25. А. Wujek, D. E. Intracellular bacteria in the blue-green-alga Pleurocapsa minor // Transactions of the American Microscopical Society 98: 143–145 (1979). Б. Gatehouse, L. N., Sutherland, P., Forgie, S. A., Kaji, R., and J. T. Christellera Molecular and histological characterization of primary (beta-proteobacteria) and secondary (gammaproteobacteria) endosymbionts of three mealybug species // Applied Environmental Microbiology 78: 1187 (2012).
Рис. 26. Fawcett, D. The Cell. W. B. Saunders, Philadelphia (1981).
Рис. 27. Alberts, B., Bray, D., Lewis, J., et al. Molecular Biology of the Cell. 4th edn. Garland Science, New York (2002).
Рис. 29. Hadjivasiliou, Z., Lane, N., Seymour, R., and A. Pomiankowski Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes // Proc. R. Soc. B 280: 20131920 (2013).
Рис. 31. Schindeldecker, M., Stark, M., Behl, C., and B. Moosmann Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity // Mechanisms of Ageing and Development 132: 171–197 (2011).
Рис. 34. Lane, N. Bioenergetic constraints on the evolution of complex life // Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a015982 CSHP (2014).
Рис. 35. Moreno-Loshuertos, R., Acin-Perez, R., Fernandez-Silva, P., Movilla, N., Perez-Martos, A., de Cordoba S. R., Gallardo, M. E., and J. A. Enriquez Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants // Nature Genetics 38: 1261–1268 (2006).
Рис. 37. Yamaguchi, M., Mori, Y., Kozuka, Y., et al. Prokaryote or eukaryote? A unique organism from the deep sea // Journal of Electron Microscopy 61: 423–431 (2012).