носителей отрицательного заряда. Третий слой, расположенный между первыми двумя, является p-слоем с избытком носителей положительного заряда. Я не буду вдаваться в подробности и рассказывать о физических процессах, происходящих в транзисторе. В этой книге гораздо важнее выяснить, что именно делает транзистор, а не привести теорию, которая объясняет его функционирование. Интересующие вас теоретические сведения можно самостоятельно отыскать в любой технической книге или в онлайн-источниках.
Три вывода биполярного n-p-n-транзистора называются «коллектором», «базой» и «эмиттером» (рис. 2.93).
Когда база n-p-n-транзистора оказывается немного более положительной, чем эмиттер, ток от положительного полюса источника питания поступает через коллектор и выходит через эмиттер. В этом случае очень слабый ток, поступающий в базу транзистора, может управлять более сильным током, проходящим через коллектор.
Транзистор p-n-p-типа работает противоположным способом. Ток поступает через эмиттер и выходит через коллектор к отрицательному полюсу источника, когда база немного отрицательнее, чем эмиттер. Транзисторы p-n-p-типа иногда оказываются более удобными, но они встречаются реже. Я не буду использовать их в книге.
Четыре варианта условного обозначения n-p-n- транзистора показаны на рис. 2.94. Все они функционально идентичны. Буквы С, В и Е соответствуют выводам коллектора, базы и эмиттера.
Четыре варианта условного обозначения p-n-p- транзистора приведены на рис. 2.95. Они тоже взаимозаменяемы.
Символы транзисторов p-n-p- и n-p-n-типа легко перепутать, но есть простой способ запомнить правильный вариант. Стрелка в символе n-p-n- транзистора указывает наружу и никогда внутрь[8]. Поэтому можно считать, что обозначение n-p-n является сокращением фразы never pointing in («никогда не указывает внутрь»).
Добавляем потенциометр
Чтобы узнать больше о том, как работает транзистор, нам понадобится более стабильный компонент, чем кончик вашего пальца. С этой работой справится потенциометр, но не такой большой, с каким вы встречались ранее (см. рис. 1.11), а подстроечный потенциометр, изображенный на рис. 2.22.
Несмотря на то, что потенциометры различаются по форме и размеру, все они имеют три контакта. Функции выводов любого потенциометра одинаковы. Средний вывод всегда соединяется с движком внутри потенциометра, а два других вывода соединяются с каждым из концов внутренней резистивной дорожки.
Когда вы вставляете подстроечный потенциометр в макетную плату, каждый вывод должен подключаться к отдельному ряду отверстий платы. Это правило иллюстрирует рис. 2.96. В верхней части рисунка я нарисовал вид сверху для трех типов подстроечного потенциометра, включая многовитковый; и хотя я его не рекомендую, возможно, однажды вы с ним столкнетесь. Контакты не видны сверху, но я показал их расположение так, как если бы вы видели их сквозь компонент. Расположение контактов может быть разным, но их всегда три и они должны отстоять друг от друга на 2,5 мм по вертикали.
Изображенные в нижней части рисунка два примера «Да» будут работать, потому что каждый вывод соединен с отдельным рядом отверстий в макетной плате. Два примера «Нет» неприемлемы, потому что пара контактов окажется замкнутой друг с другом из-за наличия внутренних проводников макетной платы.
Разобравшись с устройством подстроечного потенциометра, мне хотелось бы, чтобы вы добавили потенциометр номиналом 500 кОм к вашей схеме с транзистором так, как показано на рис. 2.97. Подключите питание и с помощью небольшой отвертки поверните движок потенциометра до упора по часовой стрелке, а затем таким же образом против часовой стрелки. Заметьте, что если в начале эксперимента светодиод погашен, то при небольшом повороте