ЭВЛ и ЭВИ ? 5–10 мм, выдерживающие большую токовую нагрузку. Из-за окисления вольфрамовых электродов и их быстрого разрушения для защиты не допускается использовать газы, содержащие кислород. Основным защитным газом является аргон или аргоно-гелиевая смесь. Наряду с инертными газами, для сварки вольфрамовым электродом используют и некоторые активные газы, например азот и водород, или их смеси с аргоном.

Рис. 6.3. Ручная дуговая сварка неплавящимися электродами:

1 – деталь; 2 – электрод; 3 – поток защитного газа; 4 – дуга; 5 – сварочная ванна; 6 – присадочный материал

Дуговая сварка под флюсом (в англоязычной литературе именуется SAW). Электрическая дуга здесь горит между плавящимся электродом и деталью под слоем сварочного флюса, полностью закрывающего дугу и сварочную ванну от взаимодействия с воздухом (рис. 6.4). Сварочный электрод выполнен в виде проволоки, свернутой в кассету и автоматически подаваемой в зону сварки. Перемещение дуги вдоль свариваемых кромок может выполняться или вручную, или с помощью специального привода. В первом случае процесс ведется с помощью сварочных полуавтоматов, во втором – с помощью сварочных автоматов. Дуговая сварка под флюсом отличается высокой производительностью и качеством получаемых соединений. К недостаткам процесса следует отнести трудность сварки деталей небольшой толщины, коротких швов и выполнение швов в основных положениях, отличных от нижних.

Рис. 6.4. Сварка под слоем флюса:

1 – деталь; 2 – слой флюса; 3 – дуга; 4 – электрод; 5 – сварочная ванна

Дуговая сварка в защитных газах (в англоязычной литературе именуется gas metal arc welding, GMA welding или GMAW, в немецкоязычной – metallschutzgasschwei?en или MSG; кроме того, различают сварку в атмосфере инертного газа metal inert gas или MIG и в атмосфере активного газа metal active gas или MAG). Электрическая дуга горит в среде специально подаваемых в зону сварки защитных газов (рис. 6.5). Защитные газы изолируют сварочную ванну от атмосферного воздействия, поэтому металлургические процессы протекают только между элементами, содержащимися в основном и присадочном металлах. Наиболее эффективными являются инертные газы (аргон, гелий), которые не взаимодействуют с другими элементами. Защитная роль инертных газов значительно повышается при тщательной зачистке свариваемых кромок, на которых могут быть посторонние элементы, влияющие на химические процессы, происходящие в сварочной ванне. Роль активного газа СO2 сводится к оттеснению от сварочной ванны окружающего воздуха, и в первую очередь азота.

Рис. 6.5. Сварка в защитном газе:

1 – деталь; 2 – защитный газ; 3 – электрод; 4 – дуга; 5 – сварочная ванна

При этом виде сварки можно использовать как неплавящиеся, так и плавящиеся электроды. Процесс выполняют ручным, механизированным или автоматическим способом. При сварке неплавящимся электродом применяют присадочную проволоку, при плавящемся электроде присадки не требуется. Сварка в защитных газах отличается широким разнообразием и применяется для широкого круга металлов и сплавов.

Свойства сварочной дуги

Для ручной дуговой сварки используют сварочную дугу прямого действия, когда дуга горит между электродом и изделием. В промышленности и при высокотехнологических способах сварки применяют также многоэлектродные дуги.

По роду тока различают дуги, питаемые переменным и постоянным током. Вследствие того, что мгновенные значения переменного тока переходят через нуль 100 раз в секунду, ионизация дугового промежутка менее стабильна и сварочная дуга менее устойчива по сравнению с дугой постоянного тока. Поэтому для этого вида дуги используют специальные электроды с соответствующим покрытием, которое стабилизирует дугу при пропадании тока.

При применении постоянного тока, как упоминалось выше, различают сварку на прямой и обратной полярности. В первом случае электрод подключается к отрицательному полюсу и служит катодом, а изделие – к положительному полюсу и служит анодом, т. е. ток идет от электрода к нагреваемому металлу. Во втором случае электрод подключается к положительному полюсу и служит анодом, а изделие – к отрицательному и служит катодом. Свободные электроны движутся от свариваемого металла через электрод, что ведет к сильному нагреву последнего. При одних и тех же параметрах источника сварочного тока температура на поверхности свариваемого металла при обратной полярности будет ниже, и этот эффект широко используют при сварке тонкой или высоколегированной стали. Если же сварка ведется на переменном токе, каждый из электродов является попеременно то анодом, то катодом.

Сварочный электрод плавится за счет тепла, сконцентрированного на его конце в приэлектродной области дуги. Количество тепла, выделяемого в этой области, напрямую зависит от силы тока и электрического сопротивления промежутка, образовавшегося между электродом и основным металлом. И чем больше вылет электрода, тем больше его сопротивление и тем больше выделяется тепла. Нагреваясь до температуры 2300–2500 °C, конец электрода

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату