работы требуют минимума притока внешнего воздуха (фактически та же теплоизоляция) и интенсивного его перемешивания.
Но и это далеко не все — напомним, что тепловые процессы крайне инерционны. И нагреватель, и датчик, и масса воды, и стенки бака обладают некоей теплоемкостью и, соответственно, тепловой инерцией, которая на много порядков превышает время срабатывания электронных устройств. Процессы нагревания и остывания протекают во времени примерно так же, как процесс заряда-разряда конденсатора через резистор (см. рис. 5.7), соответственно эти процессы также можно охарактеризовать аналогом постоянной времени RC — она так и называется
Что будет происходить в реальной системе? Когда температура, по мнению датчика, достигла заданной, электронные компоненты послушно выключат питание нагревателя. Но он еще некоторое время будет греть воду, отдавая туда тепло, запасенное за счет его собственной теплоемкости. Чем массивнее нагреватель, тем дольше будет длиться этот процесс. Мало того, это остаточное время также зависит от мощности нагревателя — чем он мощнее, тем также количество лишнего отданного тепла будет больше, потому что выше будет начальная температура внутри нагревателя. Произойдет перерегулирование — нагреватель давно выключен, а температура некоторое время продолжает расти. В точности то же самое, но в обратную сторону, повторится при остывании системы — нагреватель включится, но ему нужно некоторое время, чтобы прогреться, и все это время температура будет продолжать падать.
Отсюда второе условие хорошего регулирования — масса нагревателя и его мощность должны быть минимально возможными, т. е. такими, чтобы при наихудших условиях (при максимальной разнице между установленным значением температуры и окружающей средой) только-только суметь «победить» потери тепла через стенки бака и через поверхность воды. На самом деле это положение в полной мере действительно только в нашей простейшей схеме релейного регулирования (нагреватель или выключен, или включен полностью).
Можно ослабить требования, если регулировку производить другим способом — плавным изменением мощности пропорционально разнице температур. Схема такого пропорционального регулятора значительно сложнее простой релейной, но и требуется такой подход лишь в особо точных профессиональных термостатирующих устройствах. В быту практически всегда можно обойтись релейным регулированием.
Естественно, само по себе регулирование будет происходить только в определенных пределах температуры окружающей среды. Если температура среды выше или равна установленной, то бак никогда не остынет, а нагреватель никогда не включится, и система будет просто иметь температуру окружающей среды. Наоборот, при очень низкой температуре среды у нас может не справиться нагреватель — потери тепла превзойдут его мощность.
Холодильник в этой системе может понадобиться, если нам нужно поддерживать температуру ниже температуры окружающей среды или независимо от нее (в рассмотренном случае роль холодильника играет окружающая среда). Как же его сюда при необходимости пристроить? Это несложно — достаточно разместить охлаждающий агрегат в баке, а включать его, например, в противоположной фазе с нагревателем: когда нагреватель включен, холодильник выключен, и наоборот. Но холодильник всегда имеет очень большую инерционность, и плавное регулирование мощности (холодопроизводительности) для него недоступно. Поэтому чаще поступают иначе: холодильник нередко не выключают вовсе, а мощность нагревателя подбирают так, чтобы он в любом случае «побеждал» холодильник. При этом, увы, подавляющая часть потребляемой энергии уходит на взаимную «борьбу» холодильника и нагревателя, т. е. с точки зрения целевого назначения совершенно впустую. Зато качество регулирования оказывается на высоте.
Если же вообще нагреватель убрать, а холодильный агрегат включать через регулятор по рис. 12.7 (естественно, где-то инвертировав фазу — холодильник должен включаться при превышении заданной температуры, а не при снижении ее), мы получим в точности схему обычного домашнего холодильника — он ведь и предназначен для того, чтобы поддерживать температуру всегда ниже, чем температура окружающей среды, и точно так же перестанет что-либо регулировать, если эта температура выйдет за пределы диапазона регулировки. Если холодильник выставить на мороз, то он никогда не нагреется, а если поставить в горячем цеху (или просто открыть дверцу), то никогда не выключится.
Вооружившись таким пониманием процессов, происходящих в термостатах, приступим к практическому их проектированию.
Простые конструкции термостатов, как мы говорили, используют релейный принцип регулирования — «включено-выключено». Иначе такие регуляторы еще называют
На рис. 12.8 приведена практическая схема терморегулятора для аквариума.
