интегрирования. На входе верхнего ОУ установится напряжение, равное нулю, а на выходе, вообще говоря (т. к. обратная связь по-прежнему отсутствует), оно станет неопределенным, и на диаграмме показано условно в виде нулевого уровня.

Это состояние длится до конца периода тактовой частоты, а с отрицательным перепадом на входе Т ключи D1/З и D1/2 закроются, и все начнется сначала. На выходе схемы образуется положительный импульс напряжения, длительность которого t3 — t2 пропорциональна входному напряжению, согласно соотношению, сформулированному ранее.

Схема рассчитана для получения разрешающей способности 12 разрядов или 4096 градаций. Стабильность схемы напрямую зависит от стабильности резисторов, поэтому их нужно выбирать с точностью не хуже 0,1 %, в этом случае абсолютная точность может достигнуть 10 разрядов без дополнительной калибровки.

Однако Uоп тоже должно иметь не меньшую стабильность, поэтому для его получения следует использовать прецизионные источники опорного напряжения. В данном случае подойдет микросхема МАХ875, дающая на выходе 5 В с точностью 0,04 %. Подробный анализ всех погрешностей этой схемы, в том числе температурных, занял бы слишком много места, поэтому рассмотрим еще только принцип выбора частоты преобразования и требования к элементам.

Максимальная частота отсчетов может быть подсчитана из следующих соображений. Так как мы имеем дело с КМОП, то максимальную частоту счетных импульсов примем равной 1 МГц. Нам требуется обеспечить 12 разрядов, т. е. число импульсов за время «ворот» при максимально возможном входном напряжении, равном опорному, должно составить как минимум 4096 штук. Поделив 1 МГц на это число, мы получим частоту около 244 Гц, однако ее надо еще уменьшить вдвое, поскольку у нас в рабочем периоде должно быть два таких такта: прямого и обратного интегрирования. Итого получаем 122 Гц, что и есть максимальная частота при выбранной элементной базе. Исходя из этого выбраны величины сопротивлений и емкость конденсатора. При указанных на схеме их величинах, напряжение на выходе интегратора при входном напряжении 5 В достигнет примерно 9 В за время интегрирования, равное половине периода частоты 122 Гц.

Входное напряжение ограничено для данной схемы диапазоном от нуля до примерно 4,95 В. Напряжение выше этого значения расстроит работу схемы, потому что импульс обнуления за счет RC-цепочки все еще будет длиться, когда придет импульс установки. Импульс обнуления можно было бы сократить, например, за счет введения «корректной» дифференцирующей цепочки (по рис. 16.6, а), но к ограничению уровня входного напряжения ведет и другое обстоятельство, а именно — конечное время разряда конденсатора через ключ при приведении схемы в исходное состояние. При использованных на схеме элементах и при условии достаточно полного разряда оно составит не менее 20–30 микросекунд (сопротивление ключа около 50 Ом), т. е. до 1 % от максимальной длительности, что и ограничивает время рабочего импульса и максимальное напряжение примерно на ту же величину. Избавиться от этого можно только усложнением схемы и введением дополнительного интервала специально для обнуления — в серийных АЦП так и поступают.

Теперь о выборе элементов. При указанных частотах скорость нарастания сигнала на выходе верхнего по схеме ОУ, служащего компаратором, должна быть такой, чтобы сигнал изменялся от напряжения насыщения до нуля не более чем в пределах одного импульса счетной частоты, длящегося 1 мкс. То есть скорость нарастания должна быть не меньше 10 В/мкс, иначе мы получим ошибку за счет неточного определения момента окончания интегрирования (то же требование справедливо и для скорости срабатывания ключей). Второе требование к ОУ — для более точного интегрирования желателен достаточно малый входной ток смещения, не более нескольких наноампер. Он рассчитывается исходя из величины максимального тока интегрирования, в данном случае около 250 мкА, деленного на ту же величину в 12 разрядов, т. е. 4096. Входной ток ОУ должен удовлетворять условию «много меньше», чем полученная величина около 60 нА.

Если принять во внимание допустимое напряжение питания (не менее 12 В), то не так уж и много ОУ удовлетворят указанным требованиям. Микросхема ОРА2132 (два ОРА132 в одном корпусе DIP-8) фирмы Texas Instruments представляет собой прецизионный ОУ с высоким быстродействием (полоса 8 МГц, скорость нарастания до 20 В/мкс), очень малым входным током смещения (50 пА) и высоким допустимым напряжением питания до ±18 В. Из классических отечественных ОУ в коридор требований с некоторой натугой влезет 544УД2 или некоторые ОУ серии 574.

Впрочем, номенклатуру пригодных чипов можно значительно расширить, если снизить напряжение питания до ±5 В (при этом допустимый диапазон входного напряжения необязательно снизится, т. к. оно может превышать напряжение питания, просто манипулировать многими питаниями неудобно) и/или уменьшить частоту счета, например, до 100 кГц (частота отсчетов снизится до 12 Гц, а требования к быстродействию ОУ соответственно упадут). Все это иллюстрирует сложности, которые приходится преодолевать разработчикам при проектировании подобных АЦП в интегральном исполнении, и объясняет, почему интегрирующие АЦП обычно работают так медленно — у большинства прецизионных АЦП частота отсчетов не превышает величины несколько десятков или сотен герц.

Сконструированное нами АЦП относится к типу ПНВ — преобразователей напряжение-время. Ранее широко использовались ПНЧ — преобразователи напряжение-частота (в основном на основе микросхемы 555, см. главу 16), однако большинство их реализаций обладает тем же недостатком, что и однократный интегратор, т. е. в них точность зависит от качества компонентов напрямую. Сейчас мы рассмотрим интегрирующий преобразователь, который также использует двойное интегрирование, но на выходе его получается не интервал времени, который еще нужно сосчитать, а число-импульсный код, т. е. сразу число импульсов за определенный промежуток времени, пропорциональное входному напряжению. Это не частота, как

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату