интегрирования. На входе верхнего ОУ установится напряжение, равное нулю, а на выходе, вообще говоря (т. к. обратная связь по-прежнему отсутствует), оно станет неопределенным, и на диаграмме показано условно в виде нулевого уровня.
Это состояние длится до конца периода тактовой частоты, а с отрицательным перепадом на входе
Схема рассчитана для получения разрешающей способности 12 разрядов или 4096 градаций. Стабильность схемы напрямую зависит от стабильности резисторов, поэтому их нужно выбирать с точностью не хуже 0,1 %, в этом случае абсолютная точность может достигнуть 10 разрядов без дополнительной калибровки.
Однако
Максимальная частота отсчетов может быть подсчитана из следующих соображений. Так как мы имеем дело с КМОП, то максимальную частоту счетных импульсов примем равной 1 МГц. Нам требуется обеспечить 12 разрядов, т. е. число импульсов за время «ворот» при максимально возможном входном напряжении, равном опорному, должно составить как минимум 4096 штук. Поделив 1 МГц на это число, мы получим частоту около 244 Гц, однако ее надо еще уменьшить вдвое, поскольку у нас в рабочем периоде должно быть два таких такта: прямого и обратного интегрирования. Итого получаем 122 Гц, что и есть максимальная частота при выбранной элементной базе. Исходя из этого выбраны величины сопротивлений и емкость конденсатора. При указанных на схеме их величинах, напряжение на выходе интегратора при входном напряжении 5 В достигнет примерно 9 В за время интегрирования, равное половине периода частоты 122 Гц.
Входное напряжение ограничено для данной схемы диапазоном от нуля до примерно 4,95 В. Напряжение выше этого значения расстроит работу схемы, потому что импульс обнуления за счет RC-цепочки все еще будет длиться, когда придет импульс установки. Импульс обнуления можно было бы сократить, например, за счет введения «корректной» дифференцирующей цепочки (по рис. 16.6,
Теперь о выборе элементов. При указанных частотах скорость нарастания сигнала на выходе верхнего по схеме ОУ, служащего компаратором, должна быть такой, чтобы сигнал изменялся от напряжения насыщения до нуля не более чем в пределах одного импульса счетной частоты, длящегося 1 мкс. То есть скорость нарастания должна быть не меньше 10 В/мкс, иначе мы получим ошибку за счет неточного определения момента окончания интегрирования (то же требование справедливо и для скорости срабатывания ключей). Второе требование к ОУ — для более точного интегрирования желателен достаточно малый входной ток смещения, не более нескольких наноампер. Он рассчитывается исходя из величины максимального тока интегрирования, в данном случае около 250 мкА, деленного на ту же величину в 12 разрядов, т. е. 4096. Входной ток ОУ должен удовлетворять условию «много меньше», чем полученная величина около 60 нА.
Если принять во внимание допустимое напряжение питания (не менее 12 В), то не так уж и много ОУ удовлетворят указанным требованиям. Микросхема ОРА2132 (два ОРА132 в одном корпусе DIP-8) фирмы
Впрочем, номенклатуру пригодных чипов можно значительно расширить, если снизить напряжение питания до ±5 В (при этом допустимый диапазон входного напряжения необязательно снизится, т. к. оно может превышать напряжение питания, просто манипулировать многими питаниями неудобно) и/или уменьшить частоту счета, например, до 100 кГц (частота отсчетов снизится до 12 Гц, а требования к быстродействию ОУ соответственно упадут). Все это иллюстрирует сложности, которые приходится преодолевать разработчикам при проектировании подобных АЦП в интегральном исполнении, и объясняет, почему интегрирующие АЦП обычно работают так медленно — у большинства прецизионных АЦП частота отсчетов не превышает величины несколько десятков или сотен герц.
Сконструированное нами АЦП относится к типу ПНВ — преобразователей напряжение-время. Ранее широко использовались ПНЧ — преобразователи напряжение-частота (в основном на основе микросхемы 555, см.