Покажем основной порядок действий при чтении из памяти в случае использования регистра z (r31:r30). Чтение одной ячейки с заданным адресом Address, коррекция ее значения и обратная запись производятся так:

Режимы с преддекрементом и постинкрементом используются, когда нужно прочесть/записать целый фрагмент из памяти. Схема действий аналогичная, только команды выглядят так:

Абсолютно аналогично выглядят команды чтения:

А вот как можно в цикле записать одно и то же значение из temp в 16 идущих подряд ячеек памяти, начиная с нулевого адреса старших 256 байтов памяти:

Напомним, что область пользовательского ОЗУ начинается с адреса $60 (9610). При попытке записать что-то по меньшему адресу вы обязательно попадаете в какой-то регистр, и результат окажется непредсказуем. Также не следует забывать о том, что последние адреса ОЗУ заняты под стек, который обязательно задействуется, если в программе применяются прерывания. Так, в ATmega8535 имеется 512 байтов SRAM, потому последний адрес (RAMEND) будет равен 96 + 512 — 1 = 607 ($25F), но не стоит занимать адреса ОЗУ выше примерно 592 ($250).

Использование встроенного АЦП

Встроенный АЦП последовательного приближения входит в состав почти всех МК семейства Mega и большинства МК семейства Tiny, кроме простейших младших моделей и, увы, знакомого нам Tiny2313. Мы не будем жаться (от батареек термометру-барометру работать не придется, и экономить тут нечего) и выберем ATmega8535 в корпусе с 40 выводами, у которого имеются четыре порта А, В, С и D полностью (каждый по 8 выводов) и некоторая часть выводов задействована только под альтернативные функции.

Сначала несколько общих слов о встроенных АЦП. Во всех моделях AVR общего назначения они многоканальные и 10-разрядные (за некоторым исключением, например, в ATmega8 из 6 каналов только четыре имеют разрешение 10 разрядов, а оставшиеся два — 8, а в новейшем семействе Xmega АЦП имеет 12 разрядов).

Многоканальность означает, что имеется только одно ядро преобразователя, которое по желанию программиста может подключаться к одному из входов через аналоговый мультиплексор, наподобие 561КП2, рассмотренного в главе 15. Если вы, как чаще всего и бывает, задействуете лишь часть входов, то остальные могут использоваться, как обычные порты ввода/вывода.

Точность АЦП номинально составляет ±2 LSB, плюс еще 0,5 LSB за счет нелинейности по всей шкале. То есть фактически такой АЦП с точки зрения абсолютной точности соответствует 8-разрядному. При соблюдении всех условий эту точность, впрочем, можно повысить, правда, условия довольно жесткие и включают в себя как «правильную» разводку выводов АЦП, так и, например, требование остановки цифровых узлов на время измерения, чтобы исключить наводки (специальный режим ADC Noise Reduction, которого мы здесь касаться не будем).

Чтобы не углубляться в детали этого процесса и не усложнять задачу, мы в дальнейшем поступим проще: предпримем ряд мер, чтобы обеспечить стабильность результата, а абсолютную ошибку скомпенсируем за счет калибровки, которая все равно потребуется. Для этой цели погрешности встроенного АЦП нам хватит и без особых ухищрений, важно только, чтобы показания не «дребезжали». Уменьшение дребезга почти до нуля у нас будет достигаться тем, что, во-первых, на входе канала мы поставим конденсатор для фильтрации неизбежных в совмещенных аналого-цифровых схемах наводок на внешние цепи (фирменное руководство рекомендует еще последовательно с ним включать индуктивность порядка 10 мкГн, но мы без этого обойдемся). Во-вторых, мы будем измерять несколько раз и усреднять значения отдельных измерений.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату