рекомендуется употреблять во времязадающих цепях, если требуется хоть какая-то точность.

Для использования в других областях применяют конденсаторы с неполярным диэлектриком: бумажные, слюдяные, керамические, полиэтилентерефталатные (лавсановые) или фторопластовые (тефлоновые). Емкость их (в соотношении емкость/габариты) значительно меньше, и номинальная емкость обычно не превышает нескольких микрофарад (сравнительные размеры конденсаторов показаны на рис. 5.8).

Рис. 5.8. Сравнительные размеры конденсаторов.

Вверху, слева — электролитический конденсатор К50-35 3,3 мк х 25 В; справа — близкий к нему по допустимому напряжению неполярный конденсатор К73-17 3,3 мк с лавсановым диэлектриком. Внизу: электролитические конденсаторы К50-35 (справа налево: 6800 мк х 35 В; 2200 мк х 35 В; 2200 мк х 16 В; далее два идентичных конденсатора 100 мк х 16 В, но производства разных фирм)

У старинных металлобумажных конденсаторов (типа МБГ или МБГЧ) есть интересная особенность — они могут самовосстанавливаться после пробоя. Но чаще всего сейчас употребляются неполярные конденсаторы с керамическим или органическим диэлектриком (типы К10, К73 и др.), и под неполярными мы будем обычно понимать конденсаторы именно этих серий. Именно они обеспечивают наиболее точное соответствие кривой заряда-разряда теоретической форме (как на рис. 5.7). Причем для применения в точных времязадающих! цепях рекомендуется не просто выбирать конденсатор с подходящим изолятором (лучше всего — тефлоновый или старинный слюдяной), но и с как можно большим допустимым напряжением (в применении конденсатора с номинальным допустимым напряжением 630 В в цепях с напряжением 12 В нет ничего особенного).

Наиболее распространены неполярные керамические конденсаторы (отечественный аналог — К10), которые имеют оптимальное соотношение емкость/габариты и приемлемые характеристики по долговечности и стабильности. Они выпускаются как с гибкими выводами (обычно почему-то в корпусах желтого цвета), так и в SMD-исполнении. Емкости их могут варьировать в широком диапазоне от 1 пФ до 47 мкФ, а максимально допустимое напряжение, как правило, не менее 50 В.

В добавление к тому, что было сказано в разд. «Резисторы» про условные обозначения, нужно отметить, что, поскольку емкости обычно употребляемых конденсаторов находятся в пределах от пико- до микрофарад, то при обозначении на схемах единицу измерения Ф часто опускают и пишут просто «мк» (мкФ), «н» или «п» (нФ), «п» или «р» (пФ). Пикофарады (подобно омам) могут и не писать вообще. Часто микрофарады обозначаются просто лишним десятичным знаком (мы именно так и будем поступать) — например, запись 100,0 означает 100 мкФ, в то время как просто 100–100 пФ.

Параллельное и последовательное включение конденсаторов

Как и резисторы, конденсаторы могут включаться последовательно или параллельно, однако расчет полученных величин производится противоположным образом: при параллельном соединении емкости складываются (по правилу «больше большего»), а при последовательном соединении складываются их обратные величины (правило «меньше меньшего»). К счастью, в отличие от резисторов, конденсаторы включают практически только параллельно — можно это представить так, как будто при этом складываются площади их пластин, следовательно, складываются и емкости. Последовательное же соединение емкостей само по себе не имеет практического смысла, и знание правил сложения для него необходимо лишь изредка при анализе цепей переменного тока.

Конденсаторы в цепи переменного тока

Из этой большой темы мы здесь рассмотрим только самое необходимое. В дальнейшем мы будем иметь дело в основном с цепями постоянного тока или низкой частоты, и углубленное изучение поведения компонентов при высокой частоте нам не потребуется. В предыдущей фразе слова «низкой частоты» нужно понимать условно, и вот почему — любой перепад напряжения (например, при включении или выключении питания) есть импульс высокой частоты, и тем она выше, чем быстрее происходит сам процесс снижения или повышения напряжения. Если представить себе фронт импульса постоянного тока как сумму гармонических (т. е. синусоидальных) колебаний[8], то импульс этот предстанет перед нами как сумма колебаний, начиная сверху с той частоты, при которой происходило бы наблюдающееся нами на деле нарастание (или спад) напряжения импульса, если бы сигнал был чисто гармонический. То есть, если импульс строго прямоугольный, то эта самая верхняя частота должна быть равна бесконечности, чего на деле, конечно, не бывает, поэтому реальные импульсы всегда не строго прямоугольны. Прохождение прямоугольных импульсов через конденсаторы и резисторы мы рассмотрим далее, а пока изучим поведение конденсаторов в цепях с обычным синусоидальным переменным током.

Постоянный ток конденсатор не пропускает по определению — поскольку представляет собой разрыв в цепи. Однако переменный ток через него

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату