Зарядка аккумуляторов
В радиолюбительской практике и в быту обычно приходится самостоятельно заряжать универсальные аккумуляторы: пальчиковые NiMH или, изредка, NiCd-разновидности Самому сооружать для них зарядные устройства бессмысленно, проще и дешевле их приобрести. В любом случае лучше не использовать дешевый блок зарядки без автоматики, внутри которого всего только и есть, что диод да ограничивающий ток резистор. Взрываться такие аккумуляторы, скорее всего, не станут, а вот перезаряда они не любят и быстро от этого портятся (NiCd, в частности, имеют привычку при регулярной перезарядке вздуваться). Если все же вам жаль потратиться на приличный «интеллектуальный» зарядник фирмы
Как правильно рассчитать время заряда, если у вас нет «умного» зарядника или емкость отличается от номинальной? Просто поделите энергоемкость аккумулятора (в мА-ч) на зарядный ток, который выдает ваше устройство (в мА), и вы получите время в часах, которое нужно умножить примерно на 1,3– 1,4. Если величина тока не указана, то в инструкции обычно приводится таблица времени зарядки в зависимости от емкости, тогда ток можно ориентировочно подсчитать самостоятельно, можно и попытаться померить его мультиметром. Обычный «универсальный» режим заряда, который не может повредить никакому аккумулятору (кроме, конечно, литиевых), предполагает зарядку током в одну десятую от емкости — например, АА-тип емкостью 2000 мА-ч надо заряжать 13–14 часов током 200 мА. Разумеется, этот расчет относится к полностью разряженному аккумулятору, т. к. точный расчет времени при частичном разряде — задача практически нерешаемая.
Остальные варианты источников питания мобильными не являются и носят общее название вторичных источников питания (ИВЭП — источники вторичного электропитания), потому что они преобразуют энергию бытовой электросети в нужное напряжение постоянного тока. Для малопотребляющих конструкций, вроде рассматриваемых в этой книге, используются обычные трансформаторные («линейные») источники в силу их простоты, надежности и дешевизны, к рассмотрению которых мы сейчас и перейдем.
Но перед этим упомянем еще об одной альтернативе, которая была весьма модной в радиолюбительских кругах в советские времена — бестрансформаторные источники питания от сети. Вы можете наткнуться на нечто подобное, если перелистаете старые журналы «Радио». В связи с этим следует сказать только одно:
Это опасно для жизни — ваша схема будет всегда находиться под высоким напряжением относительно земли (земли без кавычек — т. е. водопроводных труб, батарей отопления и т. п.). Если схема предназначена для управления мощной сетевой нагрузкой, то это управление следует обязательно осуществлять через гальванически развязывающие элементы: реле, оптроны, электронные реле, трансформаторы и т. п.
Единственное исключение вы встретите в следующей главе, где будет идти речь об управлении мощной нагрузкой — там безопасность должна обеспечиваться конструктивными методами (изоляцией корпуса, элементов управления и пр.).
Трансформаторы
Основой трансформаторных источников служит сетевой трансформатор. Независимо от конкретной конструкции, трансформаторы всегда устроены по одному принципу — на замкнутом каркасе из металлических пластин или ленты находятся несколько обмоток. Две самые распространенные разновидности трансформаторов — с Ш-образным и тороидальным сердечником — схематично показаны на рис. 9.5.
Рис. 9.5.
1 — сердечник, 2 — обмотки; 3 — выводы обмоток
Если есть выбор, то лучше предпочесть тороидальный трансформатор — у него меньшее магнитное поле рассеяния и, главное, в случае чего на него легко домотать недостающие обмотки или добавить витков к имеющимся. При выборе трансформатора следует предпочесть те, которые залиты компаундом (в старинных конструкциях употреблялся просто парафин). Или, по крайней мере, у трансформаторов с Ш-образным сердечником катушка с обмотками должна прочно, без люфта, держаться на стержне, а сами пластины должны быть обязательно плотно сжаты специальной скобой. Иначе трансформатор
