Рис. 9.18.
Она слишком громоздка для того, чтобы воспроизводить ее в деталях, а для повторения «на коленке» не годится — неоправданно трудоемка. Однако в компьютерном блоке питания рано или поздно приходится ковыряться, наверное, каждому радиолюбителю, и для того, чтобы вы понимали, как это работает, опишем устройство этой схемы.
Здесь сетевое напряжение 220 В выпрямляется стандартным мостом, а затем делится пополам с помощью конденсаторов С1 и С2. Ключевые транзисторы VT1 и VT2 попеременно подключают обмотку высокочастотного трансформатора Т1 на ферритовом сердечнике то к плюсу входного напряжения, то к минусу. Все эти элементы должны быть рассчитаны как минимум на половину амплитудного значения сетевого напряжения (т. е. на 160– 170 В, если с некоторым запасом). Напряжение со вторичной обмотки выпрямляется по стандартной схеме двухполупериодного выпрямителя на двух диодах (сравните со схемой на рис. 9.8). Выходное напряжение сглаживается
Обычная частота работы таких устройств — 10–30 кГц (малогабаритные импульсные источники могут работать и на более высокой частоте). При такой частоте трансформатор на небольшом ферритовом кольце (30–40 мм в диаметре) может передать десятки ватт мощности. КПД таких источников может достигать 60–80 %, вход и выход гальванически изолированы. Основные потери обусловлены рассеиванием тепла на ключевых транзисторах из-за их недостаточного быстродействия, а при малых выходных напряжениях еще и потерями за счет прямого падения напряжения на диодах VD1 и VD2.
На рис. 9.19 приведена схема импульсного преобразователя с гальванической развязкой входа и выхода, более пригодная для самостоятельного повторения. Он преобразует входное напряжение +9 В в два высоких напряжения ±165 В. Я специально рассмотрел такой крайний случай — и далее покажу, как изменением всего нескольких параметров схемы получить на выходе практически любую пару симметричных напряжений. Общая максимальная мощность схемы — приблизительно 4 Вт (при данном выходном напряжении максимальный нагрузочный ток до 12 мА по каждому из выходов). Она может быть повышена, если малогабаритные MOSFET-транзисторы IRFD110 заменить более мощными (например, IRFZ44) и установить их на радиаторы.
Рассмотрим работу схемы. Единственный компонент, который мы еще не «проходили», — это логическая КМОП-микрохема 564ЛА7 в планарном корпусе, ее можно заменить на аналог в DIP-корпусе (К561ЛА7). О них пойдет речь в
Генератор прямоугольных импульсов, который на этой микросхеме построен, будет рассмотрен в
Стабилизирующая часть схемы построена на оптроне 6N139, который имеет внутри довольно сложную конструкцию, но практически представляет собой транзисторный оптрон, — подавая на вход (выводы
Рис. 9.19.
В результате все вместе работает так: если выходное напряжение схемы недопустимо повысилось, то ключ на транзисторе КТ605АМ открывается, на выходе оптрона появляется близкое к нулю напряжение, логические элементы DD1/3 и DD1/4 при этом запираются, и на ключи ничего не подается. Напряжение на выходе снижается, ключ КТ605АМ запирается, напряжение на выходе оптрона становится близким к напряжению питания, и импульсы опять поступают на трансформатор. Вместо 6N139 без изменений в схеме можно использовать 6N135, 6N136 (эти даже лучше — они более быстродействующие) или 6N138.
Трансформатор намотан на ферритовом кольце с характеристиками, указанными на схеме. Мотаются обмотки медным обмоточным проводом ПЭВ-2 парами совместно, причем обратите внимание, что у входной пары обмоток соединен конец одной с началом другой, а у выходной — начала обеих обмоток. С помощью подбора дополнительного резистора 2 кОм (на схеме он помечен звездочкой и соединен пунктиром) выходное напряжение устанавливается более точно. Дроссель по питанию +9 В (390 мкГ) служит для защиты внешних сетей от помех. Учтите, что схема довольно заметно «фонит» в
