Закончив на этом со скучной теорией, перейдем к практическим схемам.

Ручной регулятор мощности

Такое устройство будет незаменимо, скажем, в фотостудии, где используются мощные осветительные лампы: сначала вы уменьшаете яркость до половины, спокойно настраиваете освещение, не заставляя клиента щуриться и обливаться потом, затем выводите яркость на полную и производите съемку. Можно его также применить для плавного регулирования мощности нагревателя электроплитки или электродуховки и в других подобных случаях.

Так как устройство предполагает ручное управление, нам надо позаботиться о том, чтобы изолировать орган управления — это будет переменный резистор — от сетевого напряжения. Самое удобное было бы использовать для этого симисторную оптопару — к примеру, МОС2А60-10 фирмы Motorola. Такая оптопара работает совершенно так же, как отдельный симистор, только вход у нее — не управляющий электрод симистора, а светодиод, подобно тому, как это делается в диодных оптронах и оптоэлектронных реле, описанных в главе 7. Сами электронные реле, особенно если они содержат упомянутый ранее zero-детектор, использовать в данной схеме невозможно, т. к. никакого фазового управления не получится.

Но мы попробуем построить схему самостоятельно. Основную управляющую часть будем питать прямо от сети, а вот регулировочный резистор изолируем от нее с помощью оптрона — только не симисторного, а простого диодного или резисторного, выходное сопротивление которого линейно зависит от входного тока. Обеспечить питание управляющей части схемы при этом можно от любого изолированного от цепи источника (хоть покупного выпрямителя со встроенной вилкой).

Схема регулятора представлена на рис. 10.3.

Рис. 10.3. Схема ручного регулятора мощности в нагрузке

Сначала представим себе, что вместо фотодиода оптрона у нас в схеме стоит обычный постоянный резистор. Узел, который включает этот резистор, транзисторы VT1 и VT2, конденсатор С1 и резисторы R3-R6, представляет собой так называемый релаксационный генератор на аналоге однопереходного транзистора с n-базой. Хитрая схема включения разнополярных транзисторов VT1 и VT2 и есть этот самый аналог. Подробно свойства однопереходного транзистора мы рассматривать не будем, потому что за все время моей практики единственное применение для них нашлось только вот в такой схеме релаксационного генератора, причем описываемый тут аналог работает лучше, чем настоящий однопереходный транзистор (КТ117).

Для нас достаточно знать, что такое устройство работает следующим образом: если напряжение на входе (т. е. на соединенных эмиттерах VT1 и VT2) меньше, чем на соединенных базе VT1 и коллекторе VT2 (т. е. на делителе R3-R4), то такой транзистор заперт. Если же напряжение на входе превысит напряжение на делителе R3-R4, то транзистор откроется, причем необычным образом — ток потечет от входа к эмиттеру транзистора VT2 и создаст падение напряжения на резисторе R5. В открытом состоянии он будет, подобно тиристору, пребывать до тех пор, пока ток через него (напряжение на входе) не упадет до нуля. Резистор R6 нужен для более надежного запирания транзистора VT2.

Теперь понятно, как работает генератор: сначала конденсатор заряжается с постоянной времени, обусловленной его емкостью С и сопротивлением приемника фоторезистора (обозначим его R), и, когда напряжение, на нем достигнет половины напряжения питания (что обусловлено одинаковостью резисторов R3 и R4), он очень быстро разрядится через открывшийся однопереходный транзистор, резистор R5 и подключенный параллельно с ним управляющий электрод тиристора, формируя импульс включения. Когда напряжение на конденсаторе станет мало, однопереходный транзистор закроется, и все начнется сначала — конденсатор начнет заряжаться и т. д. Частоту генератора можно оценить по формуле f = 1/RC.

А что тиристор? Он теперь останется открытым до очередного перехода сетевого напряжения через ноль, а затем будет ожидать следующего открывающего импульса. Меняя сопротивление фоторезистора, т. е. изменяя входной ток светодиода оптрона, мы можем менять промежуток между открывающими импульсами и тем самым сдвигать их фазу относительно периода сетевого напряжения.

Однако это еще довольно приблизительное описание того, что на самом деле происходит в этой схеме. Внимательный читатель давно заметил, что питание генератора осуществляется прямо от выпрямленного напряжения сети через резистор R7, величина которого подобрана таким образом, чтобы напряжение на элементах схемы даже на максимуме синусоиды не превышало бы примерно 30 В и не вывело бы элементы схемы из строя. Такое пульсирующее питание в данном случае вовсе не просто суровая необходимость — оно крайне полезно.

Все дело в том, что частота любых генераторов с времязадающей RC-цепочкой весьма нестабильна и зависит от множества причин. Если бы мы

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату