Большинство космологов признают Большой взрыв, но только при условии, что в котел теории добавляются еще три ингредиента — скрытая масса, инфляция и темная энергия. Однако, как мы увидим, каждый из этих dei ex machina — волшебных средств разрешения противоречий — приносит с собой целую кучу собственных тревожных проблем. Современная космология уже не кажется такой надежной, какой представлялась всего десятилетие назад, и не исключено, что в скором времени нас ждет революция.
* * *Закон всемирного тяготения Ньютона не был первой математической закономерностью, которую удалось разглядеть в небесах, но он как бы кристаллизовал весь подход, не говоря уже о том, что позволил продвинуться гораздо дальше, чем удавалось прежде. Это главная тема «Математики космоса», ключевое открытие, лежащее в основе книги. Или немного подробнее: в движении и структуре как небесных, так и земных тел, от мельчайших пылевых частиц до Вселенной в целом существуют математические закономерности. Понимание этих закономерностей позволяет нам не только объяснять космос, но и исследовать и осваивать космос, использовать его, а также защищаться от него.
Можно сказать, что величайшим прорывом стало само понимание того, что закономерности существуют. После этого вы уже знаете, что нужно искать, и, хотя установить точные ответы может оказаться непросто, решение задач становится делом техники. Для этого часто приходится изобретать совершенно новые математические идеи и концепции — я не утверждаю, что это просто или очевидно. Это долгая игра, она продолжается и сегодня.
Подход, который впервые применил Ньютон, положил начало стандартной процедуре. Как только новейшее открытие вылупляется из своей скорлупы, математики начинают размышлять, нельзя ли при помощи аналогичных идей решать другие задачи. Стремление к обобщению всего и вся имеет глубочайшие корни в математической душе. Бесполезно обвинять в этом Николя Бурбаки[7] и «новую математику»: эта традиция восходит еще к Евклиду и Пифагору. Из этого стремления родилась математическая физика. Современники Ньютона, в основном в континентальной Европе, применили эти принципы, которые дотянулись до космоса, к объяснению природы, тепла, звука, света, упругости, а позже еще электричества и магнетизма. И стало еще более очевидно:
В природе действуют законы. Это математические законы. Мы можем их найти. Мы можем их использовать.Разумеется, все было не так просто.
1. Притяжение на расстоянии
Макавити, Макавити, таинственный Макавити!
Законы наши соблюдать его вы не заставите.
Презрел он тяготения всемирного закон.
Томас Стернс Элиот «Учебник Старого Опоссума по котоведению» (Перевод С. Я. Маршака) ПОЧЕМУ ПРЕДМЕТЫ ПАДАЮТ ВНИЗ?Некоторые не падают. Среди них, очевидно, и Макавити. А также Солнце, Луна и почти все, что есть «там, на небесах». Хотя иногда с неба падают камни, и динозавры, к своему несчастью, убедились в этом. Здесь, на Земле, если уж вы хотите немного попридираться, летают насекомые, птицы и летучие мыши, но они не могут держаться в воздухе вечно. А все остальное неизменно падает — если, конечно, что-то не удерживает его вверху. Но те штуки, которые в небесах, ничто там не удерживает — и все же они не падают.
Кажется, что там, на небесах, все совершенно иначе, чем здесь, на земле.
Потребовалось озарение гения, чтобы понять, что земные объекты падают на Землю под действием той же самой причины, которая удерживает небесные объекты наверху. Ньютон, как широко известно, сравнил падающее яблоко с Луной и понял, что Луна остается наверху, потому что она, в отличие от яблока, движется еще и вбок[8]. На самом деле Луна непрерывно падает, но поверхность Земли уходит от нее с той же скоростью. Так что Луна может падать вечно, но при этом раз за разом огибать Землю, так никогда на нее и не упав.
Настоящая разница заключается не в том, что яблоки падают, а Луны — нет. Разница в том, что яблоки не движутся вбок достаточно быстро, чтобы пролететь мимо Земли.
Ньютон был математиком (а также физиком, химиком и мистиком), так что он немного посчитал, чтобы подтвердить свою радикальную мысль. Вычислил силы, которые должны действовать на яблоко и на Луну, чтобы те двигались по своим разным маршрутам. С учетом различия в массах этих объектов силы оказались одинаковыми. Это убедило Ньютона в том, что Земля, должно быть, притягивает к себе и яблоко, и Луну. Было естественно предположить, что притяжение того же типа действует в любой паре объектов: хоть земных, хоть небесных. Ньютон выразил эти силы притяжения математическим уравнением, сформулировав закон природы.
Одно из замечательных следствий из этого закона состоит в том, что не только Земля притягивает яблоко: яблоко тоже притягивает Землю. И Луну, и все остальные объекты во Вселенной. Но действие яблока на Землю слишком мало, чтобы его можно было измерить, в отличие от действия Земли на яблоко.
Это открытие стало гигантским успехом, глубоким и отчетливым связующим звеном между математикой и миром природы. У него есть и еще одно важное следствие, которое легко пропустить среди математических терминов и деталей: невзирая на внешнее несходство, «там, на небесах» в некоторых жизненно важных отношениях все обстоит точно так же, как «здесь, на земле». Законы там и там действуют одинаковые. Различается только контекст их приложения.
Мы называем загадочную Ньютонову силу гравитацией или тяготением. Мы умеем рассчитывать ее действие с величайшей точностью. И мы по-прежнему не понимаем ее.
* * *Долгое время нам казалось, что мы ее понимаем. Около 350 года до нашей эры греческий философ Аристотель дал простое объяснение тому, что все предметы падают вниз: они просто стремятся к своему естественному местоположению.
Чтобы избежать в рассуждениях замкнутого круга, он объяснил также, что значит «естественный». Аристотель полагал, что все на свете состоит из