Существуют способы обойти этот предел. Так, космическое бола — это гипотетическое устройство, которое раскручивает корабль как кабинку на одной из спиц колеса обозрения. Соберите последовательный каскад таких устройств — и вы получите возможность добраться до орбиты посредством серии поворотов на спицах. Или, еще лучше, можно построить космический лифт — это, по существу, крепкая веревка, свисающая вниз со спутника на геостационарной орбите, по которой можно взбираться не торопясь. При этих способах попадания на орбиту скорость убегания не имеет значения, она применима только к свободно движущимся объектам, которым дали сильный толчок и отпустили, оставив лететь самостоятельно. И это приводит к гораздо более глубокому выводу, следующему из скорости убегания, ведь одним из таких объектов является световая частица, фотон.
* * *Когда Рёмер открыл, что свет имеет конечную скорость, мало кто из ученых осознал одно из следствий: свет не может убежать от достаточно массивного тела. В 1783 году Джон Мичелл представил, что Вселенная, возможно, усыпана громадными телами, превосходящими по размеру звезды, но ничего не излучающими. В 1796 году Лаплас опубликовал ту же идею в своем фундаментальном труде Exposition du Système du Monde («Изложение системы мира»):
«Лучи от яркой звезды, имеющей ту же плотность, что и Земля, и диаметр в 250 тысяч раз больше, чем у Солнца, не дошли бы до нас из-за ее гравитационного притяжения; поэтому возможно, что крупнейшие светящиеся тела во Вселенной могут оказаться невидимыми по этой причине».
Начиная с третьего издания, автор исключил этот пассаж из книги, вероятно, потому, что Лаплас испытывал по этому поводу определенные сомнения.
Если так, ему не стоило беспокоиться, хотя потребовалось более двух столетий, чтобы подтвердить существование его «темных звезд». Ньютонова основа расчетов к тому времени сменилась теорией относительности, пролившей на концепцию темной звезды новый свет — или новую тьму. Решения эйнштейновских уравнений поля для пространства-времени, окружающего очень большую плотную массу, предсказывают кое-что даже более дикое, чем темные звезды Мичелла и Лапласа. Такая масса не только захватывает весь испускаемый ею же свет; она вообще исчезает с карты Вселенной; скрываться ей помогает билет в один конец в небытие, известный как горизонт событий. В 1964 году журналистка Энн Эвинг написала статью об этой идее с броским заголовком «Черные дыры в пространстве». Физик Джон Уиллер использовал этот же термин в 1967 году, и часто изобретателем этого термина считают именно его.
Математическое существование черных дыр является прямым следствием общей теории относительности, хотя некоторые ученые задавались вопросом, не свидетельствует ли, напротив, такое следствие из общей теории относительности о ее неполноте, о том, что в ней недостает какого-то дополнительного физического принципа, который исключил бы такое невероятное явление. Наилучший способ решить наконец этот вопрос — пронаблюдать реальную черную дыру. Это, однако, оказалось весьма хитрой задачей, и не только по причинам, которые привел компьютер Холли в британском телесериале «Красный карлик» и которые процитированы в эпиграфе. Даже если бы черная дыра была невидима, ее гравитационное поле оказывало бы на вещество вне ее характерное воздействие. Более того (прости, Холли), из теории относительности следует, что черные дыры на самом деле не черные и к тому же не совсем дыры. Свет не может выйти из них наружу, но вещество, всасываемое внутрь, дает вполне наблюдаемые эффекты.
Сегодня черные дыры не только одна из любимых тем научной фантастики. Большинство астрономов признают их существование. Мало того, создается впечатление, что большинство галактик имеет в центре сверхмассивную черную дыру. Возможно, именно поэтому галактики вообще сформировались.
* * *Теория черных дыр родилась в результате математической разработки общей теории относительности, где вещество искривляет пространство-время, а искривленное пространство-время влияет на движение вещества, — и все в соответствии с Эйнштейновыми уравнениями поля. Решение уравнений представляет возможную геометрию пространства-времени либо в ограниченной области Вселенной, либо во Вселенной в целом. К несчастью, уравнения поля очень сложны — намного сложнее уравнений Ньютоновой механики, хотя те и сами достаточно сложны. Пока у нас не появились быстрые компьютеры, найти решения уравнений поля можно было только при помощи карандаша, бумаги и, как говорил Эркюль Пуаро, «маленьких серых клеточек». В подобных обстоятельствах полезным математическим приемом становится симметрия. Если требуемое решение сферически симметрично, то единственной значимой переменной в нем является радиус. Поэтому вместо обычных трех пространственных измерений можно рассматривать всего одно, что гораздо проще.
В 1915 году Карл Шварцшильд воспользовался этой идеей, чтобы решить уравнения Эйнштейна для гравитационного поля массивной сферы, представляющей собой модель большой звезды. Уменьшение числа пространственных переменных до одной упростило уравнения в достаточной мере, чтобы он смог вывести явную формулу для геометрии пространства-времени вокруг такой сферы. В то время он в составе прусской армии сражался с русскими, но сумел все же отправить свое открытие Эйнштейну с просьбой опубликовать его. Эйнштейн был впечатлен, но сам Шварцшильд умер полгода спустя от неизлечимого аутоиммунного заболевания.
Одна из очень приятных особенностей математической физики заключается в том, что уравнения зачастую знают, кажется, больше, чем их создатели. Вы составляете уравнения