встречными курсами. Вертикальная струна 1 движется слева направо, а вертикальная струна 2 движется справа налево. Как должна выглядеть геометрия пространства вокруг двух этих струн?

Неудивительно, что на этот раз в пицце не хватает двух ломтиков. Поперечное сечение, перпендикулярное двум космическим струнам, напоминает лист бумаги с двумя вырезами, и из него можно сложить бумажный кораблик (рис. 21.5). Когда бумага разложена на столе, мы видим, где недостает двух кусков. Один начинается на струне 1 и продолжается вверх по странице, а второй начинается на струне 2 и продолжается вниз по странице. (Две струны вытянуты по направлению к вам, перпендикулярно странице.) Теперь можно срезать путь двумя способами. Если стартовать с планеты A на этом рисунке, то можно попасть на планету B по прямолинейной траектории, пролегающей между космическими струнами, она обозначена «Путь 2». Но есть и более короткий путь, который позволит вам добраться на планету B быстрее, это путь вокруг космической струны 1. Аналогично, другой сокращенный путь – путь 3 – позволяет вернуться с планеты B на планету A быстрее, чем по пути 2. Если стартовать с планеты A и отправиться на планету B на скорости 99,9999999 % от скорости света, то можно обогнать тот луч света, что летит непосредственно к планете B по пути 2. Путь 1 короче пути 2, поскольку не хватает одного «ломтика пиццы». Таким образом, можно отчалить от планеты A уже после того, как с нее по пути 2 улетит луч света, и прибыть на планету B раньше этого луча. Отправление с планеты A и прибытие на планету B – это два события, которые пространственноподобно разделены по пути 2; между ними в пространстве насчитывается больше световых лет, чем во времени – календарных лет. Вы обгоняете луч света и поэтому фактически движетесь со сверхсветовой скоростью, поскольку срезаете путь. Таким образом, некоторый наблюдатель, стремительно летящий влево, – назовем его Космо – сочтет два этих события одновременными. Поскольку его скорость меньше скорости света, он шинкует пространство-время под наклоном, как будто режет французский хлеб, и считает, что вы стартуете с планеты A и прибываете на планету B одновременно.

Теперь предположим, что в верхней части решения у нас будет стремительное движение вправо, которое захватывает и космическую струну 1, и Космо заодно с ней. Теперь струна 1 не стационарна, а быстро движется, и поскольку движение относительно, Космо больше не летит влево, а неподвижно застыл в центре. Космо смотрит на свои часы и видит, как вы в 12:00 улетаете с планеты A и в 12:00 прибываете на планету B. Если такой трюк вышел у нас однажды – выйдет и повторно.

Рис. 21.5. Геометрия пространства вокруг двух космических струн. Иллюстрация адаптирована из J. Richard Gott, Time Travel in Einstein’s Universe, Houghton Mifflin, 2001

Быстро промотайте нижнюю часть решения влево, чтобы ровно с такой высокой (субсветовой) скоростью у нас двигалась струна 2. Можно улететь с планеты B и срезать путь по траектории 3, обогнав таким образом луч света, летящий к планете A по пути 2. Между вашим отбытием с планеты A и прибытием на планету B будет больше световых лет в пространстве, чем календарных лет во времени. Если нижняя часть решения движется достаточно быстро (но все-таки медленнее света), то, с точки зрения Космо, струна 2 движется практически со скоростью света и, с точки зрения Космо, вы одновременно улетите с планеты B и прибудете на планету A. Итак, если (по его часам) вы улетите с планеты B в 12:00, то и ваше возвращение на планету A он зафиксирует в 12:00. Но вы улетели с планеты A в 12:00 по времени Космо. Вы улетаете с планеты A и возвращаетесь на нее, оставаясь в одном и том же месте в одно и то же время. Вы можете вернуться во времени и пожать руку себе же, более молодому! Вы слетали к одному из событий в вашем прошлом. Да, это настоящее путешествие в прошлое.

Вот как эта ситуация выглядит для вас. Вы прибываете в космопорт на планете A. Там вас встречает ваш двойник, старше вас, и говорит: «Привет! А я уже однажды летал вокруг струн!» Вы отвечаете: «Серьезно?». Затем вы на вашем корабле отправляетесь вокруг струны 1 и прибываете на планету B по пути 1. После этого вы сразу же улетаете с планеты B, летите вокруг струны 2 и прибываете обратно на планету A в то самое время, когда вам предстоит встретить себя же, более молодого. Говорите: «Привет! А я уже однажды летал вокруг струн!» И он вам отвечает: «Серьезно?»

Нарушает ли каким-то образом такая встреча с молодым «собой» закон сохранения энергии? Все-таки сначала вы существовали в одном экземпляре, а при этой встрече вас очевидно двое. Нет, поскольку общая теория относительности требует лишь локального сохранения энергии. Таким образом, масса-энергия в комнате может возрасти, лишь если в эту комнату извне поступит новая масса-энергия. Но вы, путешествуя во времени, входите в комнату как кто угодно другой. Масса-энергия возрастает, поскольку вы входите. Итак, локальное сохранение энергии в этих решениях соблюдается.

Важно, что две струны, проходя одна мимо другой, движутся в противоположных направлениях. В таком случае вам просто нужен космический корабль, который сможет полететь вокруг двух этих струн, – и вы сможете вернуться туда, откуда отправились. Майкл Лемоник написал для журнала Timeстатью о моей машине времени; в ней он поместил картинку, на которой я держу две струны и модельку космического корабля.

Курт Катлер из Калтеха открыл очень интересное свойство моего решения для двух струн. Была эпоха, до наступления которой никаких путешествий в прошлое не происходило. Когда в далеком прошлом две струны находились очень далеко друг от друга, на их облет уходило очень много времени, и после старта вы всегда возвращались домой на планету A. Но когда струны достаточно сближаются, просто проходят одна мимо другой, вы можете облететь эти струны и вернуться в собственное прошлое. Такое событие происходит в области хронопутешествия. На рис. 21.6 смоделирована его трехмерная пространственно-временная схема.

Рис. 21.6. Пространственно-временная схема машины времени, использующей свойства двух космических струн. Иллюстрация адаптирована из J. Richard Gott, Time Travel in Einstein’s Universe, Houghton Mifflin, 2001

Время показано по вертикали, а два пространственных измерения изображены по горизонтали, в перспективе. Поскольку струна 1 движется вправо, ее мировая линия – это прямая, отклоненная вправо. Струна 2 движется влево, и ее мировая линия – прямая, отклоненная влево. Также показана мировая линия хронопутешественника. Он

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату