Некоторые из них сферические, другие – продолговатые. Орбитали объединяются в семейства, для одних семейств характерны более высокие энергии, чем для других. Давайте абстрагируемся от этого и поговорим просто об энергетических уровнях, но на самом деле будем рисовать орбитали, занятые электронами, вращающимися вокруг атомных ядер.

Рис. 6.1. Энергетические уровни в атоме. Показан простой атом с двумя электронными орбиталями, n = 1 и n = 2. Если электрон переходит со второго энергетического уровня на более низкий первый энергетический уровень, он излучает фотон с энергией ΔE = hν, где ΔE = E2 – E1 – это разница в энергии между первым и вторым энергетическим уровнем. После того как электрон окажется на первом энергетическом уровне, он может поглотить фотон с энергией ΔE = hν и вновь подняться на энергетический уровень 2.

Предоставлено Майклом Строссом

Ядро – это точка в центре атома. Энергетический уровень n = 1 соответствует сферической орбитали, расположенной ближе всего к ядру. Энергетический уровень n = 2 – это сферическая орбиталь, расположенная чуть дальше от ядра. Электрон на энергетическом уровне n = 2 уже не так плотно связан с ядром. Электроны и протоны притягиваются; нужна энергия, чтобы отодвинуть электрон от ядра на более отдаленную орбиталь. Энергетический уровень 2 обладает более высокой энергией, чем энергетический уровень 1.

Допустим, есть электрон в основном состоянии, на энергетическом уровне 1. Он не может зависнуть где-нибудь между первым и вторым энергетическими уровнями. Там просто нет места. Это же квантовый мир. Плавных изменений там не бывает. Чтобы электрон мог перескочить на следующий уровень, ему необходимо сообщить энергию. Он должен каким-то образом поглотить энергию, и в данном случае отличным источником энергии был бы фотон. Фотон попадает в электрон, но электрону подойдет не любой фотон, а только такой, энергия которого равна энергетической разнице между двумя уровнями. Заметив такой фотон, электрон проглатывает его и перескакивает на энергетический уровень 2. Если в фотоне чуть больше или чуть меньше энергии, электрон его просто пропустит. Еще отмечу, что атомам, в отличие от людей, не нравится пребывать в возбужденном состоянии. Спустя достаточное время электрон с энергетического уровня 2 спонтанно спустится на более низкий энергетический уровень 1 (как показано прямой стрелкой на рис. 6.1).

Бывает, что достаточное время – это миллионная доля секунды. Электрон недолго пребывает в возбужденном состоянии, будучи в атоме. Итак, что должно произойти, когда электрон опускается на более низкий энергетический уровень? Он должен испустить фотон – новый, но с той же энергией, которую принял с предыдущим фотоном. При переходе на более высокий энергетический уровень фотон поглощается. При переходе на более низкий энергетический уровень фотон излучается, как показано волнистой стрелкой на рис. 6.1. Согласно знаменитому уравнению Эйнштейна, энергия E этого фотона равна hν, где h – постоянная Планка, а ν – частота фотона. Энергия излученного фотона в точности равна разнице между двумя энергетическими уровнями ΔE.(Заглавная греческая буква «дельта», Δ, часто используется для обозначения разницы или изменения величины). В результате получаем тождество ΔE = hν, позволяющее вычислить частоту того фотона, который был излучен электроном, когда тот опустился со второго на первый энергетический уровень.

Вы когда-нибудь играли с фосфоресцирующими фрисби? Чтобы они светились в темноте, их сначала нужно подержать на свету. Например, подвесить перед лампочкой. Что при этом происходит? Электроны в атомах и молекулах игрушки переходят на более высокие энергетические уровни (в таких сравнительно больших атомах много энергетических уровней) и поглощают фотоны света. Создатели игрушки подобрали такой материал, в котором эти электроны каскадируют не сразу, а постепенно, излучая при этом видимый свет. Конечно, такой процесс продолжается не вечно. Свечение прекращается после того, как все электроны вернутся в исходное состояние. Фосфоресцирующие фрисби и светящиеся костюмы скелетов, которые так нравятся детям, светятся благодаря одному и тому же принципу.

Энергия, поглощаемая электроном, может поступить от фотона, но бывают и другие источники энергии. Возможно, пролетающий мимо атом ударит по электрону, и электрон в результате такого воздействия будет заброшен на более высокий энергетический уровень. В данном случае переход осуществляется за счет кинетической энергии. Как подобный механизм работает в облаке газообразного водорода? Во-первых, нужно выяснить, а какова температура этого водородного облака? Температура в кельвинах пропорциональна средней кинетической энергии молекул или атомов в облаке. Переносное движение облака не влияет на эти измерения. Естественно, кинетическая энергия – это энергия движения, поэтому чем выше температура, тем быстрее эти частицы носятся взад-вперед. Если бы я был электроном в основном состоянии и мне дали под зад, то я мог бы проверить энергию этого пинка. Если бы такого пинка хватило, чтобы я пролетел лишь часть пути до второго энергетического уровня, то я остался бы на месте. Но если энергия пинка именно такая, какая нужна для перехода на второй энергетический уровень, то я приму эту энергию, поглощу ее и перейду на второй уровень.

При достаточной температуре можно обеспечить, чтобы вся совокупность атомов и некоторая доля их электронов находились в сравнительно высоком состоянии. Можно поддерживать такое равновесие, так, чтобы любой упавший электрон сразу выталкивался на уровень выше. Примерно так действует жонглер, удерживающий несколько мячиков в воздухе. Все это – функция температуры. При низких температурах абсолютное большинство электронов остается на энергетическом уровне n = 1 и лишь немногие электроны – на энергетическом уровне n = 2. По мере повышения температуры все больше электронов выталкивается на энергетический уровень n = 2.

Резюме. Допустим, межзвездное газовое облако подсвечивается сиянием звезды, температура которой составляет 10 000 К. У большинства атомов – множество очень сложных энергетических уровней, таково устройство природы; энергетические уровни водорода при этом сравнительно просты. Эта разнородная смесь совершенно искажает чистый тепловой спектр, излучаемый звездой с температурой 10 000 К. Посмотрим, какой же хаос получается.

Во-первых, рассмотрим полноценный атом водорода. В нем – бесконечное количество энергетических уровней, соответствующих концентрическим орбиталям, расположенным все дальше и дальше от ядра: n = 1 (основное состояние; ближайшая к ядру орбиталь), n = 2 (первый уровень возбуждения), n = 3, n = 4, n = 5, n = 6 … n = ∞. Схема энергетических уровней напоминает лестницу, поэтому называется «лестничная диаграмма». Нижние энергетические уровни, расположенные на которых электроны теснее связаны с ядром, на диаграмме также располагаются внизу (рис. 6.2).

Первое возбужденное состояние водорода – n = 2, на три четверти пути вверх, за ним следует n = 3, затем n = 4, n = 5 и так далее. Электрон с высоким n занимает очень высокую орбиталь и

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату