Солнце обладает светимостью. Земля также обладает светимостью; наша планета имеет определенную температуру и поэтому испускает излучение, преимущественно в инфракрасной части спектра; речь идет о так называемом тепловом излучении. Поскольку Земля обладает температурой, она излучает во всем спектре в соответствии с планковской кривой, соответствующей данной температуре. Общая светимость Земли вычисляется как энергия, излучаемая на единицу площади, умноженная на общую площадь Земли. Для начала вычислим площадь Земли, 4πr2ЗЕМЛ, и умножим ее на энергию, излучаемую на единицу площади Земли, то есть на T4ЗЕМЛ (по закону Стефана – Больцмана, описывающему тепловое излучение). Следовательно, светимость Земли равна LЗЕМЛ = 4πr2ЗЕМЛ T4ЗЕМЛ. То же самое справедливо и для Солнца: LСОЛН = 4πr2СОЛНσT4СОЛН. Теперь давайте выясним, какая доля солнечной светимости достается Земле. Пусть температура Земли и варьируется, фактически она колеблется вблизи довольно постоянных средних значений. В равновесном состоянии энергия, получаемая Землей от Солнца, должна быть сбалансирована с энергией, испускаемой с поверхности Земли. Это обязательное условие, в противном случае Земля бы быстро перегрелась или остыла, наблюдаемые средние значения бы не сохранялись. Эти уравнения встречались нам и ранее, но теперь мы нашли им новое применение – рассчитать равновесную температуру Земли.
Таким образом, солнечная светимость LСОЛН достается Земле лишь частично. Нас интересует не общая энергия Солнца, излучаемая во всех направлениях, а лишь та энергия, что попадает на Землю. В конечном итоге вся эта часть солнечной энергии пересекает сферическую поверхность, радиус которой равен радиусу земной орбиты (1 а.е.). Нужно определить, какую часть этой сферической поверхности фактически перекрывает Земля. Та часть поверхности, которая существенна для Земли, – та часть, где Земля успевает перехватывать солнечную энергию, – равна поперечному сечению Земли.
Следовательно, доля солнечного излучения, попадающая на Землю, – это результат деления поперечного сечения Земли πr2ЗЕМЛ на площадь большой сферы, радиус которой равен 1 а. е., через которую проходит все излучение Солнца: 4π(1 а. е.)2.Соответственно эта доля равна πr2ЗЕМЛ/4π(1 а. е.)2.Таким образом, суммарная доля солнечной светимости, которая достается Земле, равна 4πr2СОЛНσT4СОЛНπr2ЗЕМЛ/4π(1 а. е.)2. Если мы находимся в равновесном состоянии, то можем приравнять эту величину к испускаемой светимости Земли, 4πrЗЕМЛ2σT4ЗЕМЛ.Давайте запишем уравнение: 4πr2СОЛНσT4СОЛНπr2ЗЕМЛ/4π(1 а. е.)2 = 4πr2ЗЕМЛσT4ЗЕМЛ. В левой части есть члены 4π/4π, они сокращаются.πrЗЕМЛ2 присутствует и в левой, и в правой части уравнения, также сокращается, наконец, σ в обеих частях тождества тоже сокращается. Остается формула r2СОЛНT4СОЛН/(1 а. е.)2 = 4TЗЕМЛ4.
Теперь можно вычислить равновесную температуру Земли TЗЕМЛ.Для начала запишу тождество T4ЗЕМЛ = r2СОЛНT4СОЛН/4(1 а. е.)2.Чтобы оно выглядело красивее, извлеку из обеих частей уравнения корень четвертой степени, чтобы осталось TЗЕМЛ = TСОЛН√rСОЛН/(2 а. е.).
Итак, это простейшая форма данного уравнения. Но именно оно нам и требуется – это уравнение позволяет узнать температуру Земли. Давайте подставим в него значения: радиус Солнца равен 696 000 км, а 2 а.е. = 300 000 000 км. Разделим радиус Солнца 696 000 км на 300 000 000 км. Каков ответ? 0,00232. Каков квадратный корень из этого числа? 0,048. Какова температура поверхности Солнца? 5778 K. Умножим эту величину на 0,048 и получим равновесную температуру Земли: 278 К. Как известно, 273 К = 0 °C, точка замерзания воды. Действительно, средняя температура Земли находится вблизи этого значения. Но подождите, я кое-что упустил. В этом уравнении мы считаем Землю абсолютно черным телом, но ведь Земля поглощает не всю получаемую энергию. Часть солнечных лучей отражается от белых облаков, а также от белых полярных шапок. На самом деле Земля рассеивает в космос примерно 40 % энергии, получаемой от Солнца. Именно эта доля излучения не участвует в формировании температуры Земли. Если учесть в уравнении и этот множитель, то равновесная температура Земли опустится. Повторив вычисления, обнаружим, что равновесная температура оказывается минусовой. Да, вы не ошиблись: естественная равновесная температура Земли, расположенной в космосе именно на таком расстоянии от Солнца, должна быть ниже точки замерзания воды. Согласно нашим предыдущим выкладкам, на Земле не должно быть жидкой воды, а значит, и жизни. Но Земля изобилует жизнью. Значит, температура оказывается выше благодаря еще какому-то фактору. Вы угадали: все дело в парниковом эффекте. Инфракрасное излучение, испускаемое планетой, не утекает в открытый космос, а поглощается атмосферой, и атмосфера при этом нагревается; об этом шла речь в главе 2. Захваченное таким образом инфракрасное излучение подогревает поверхность Земли. Соответственно на Земле становится теплее благодаря парниковому эффекту. Оказывается, земной парниковый эффект примерно уравновешивает ее альбедо[14], поэтому наши расчеты в итоге довольно точны.
Из нашего чудесного уравнения TЗЕМЛ = TСОЛН√rСОЛН/(2 а.е.) понятно, что температура конкретной планеты, вращающейся вокруг конкретной звезды (с учетом отражательной способности и парникового эффекта этой планеты), будет обратно пропорциональна квадрату расстояния между планетой и звездой. Данное уравнение позволяет вычислить внутреннюю и внешнюю границу зоны обитаемости для данной конкретной планеты; обозначим эти пределы rмин и rмакс. На внутреннем пределе зоны обитаемости данной планеты (расстояние rмин от звезды) вода на поверхности близка к точке кипения. Если атмосферное давление равно земному, то вода кипит при температуре 373 К, или 100 °C. При rмин, на внутреннем пределе зоны обитаемости, поверхностная температура планеты равна 373 К. Вода замерзает при 0 °C, или 273 К; это происходит на внешнем пределе зоны обитаемости. Следовательно, планета на внутренней границе зоны обитаемости была бы жарче, чем та же самая планета на внешней границе зоны обитаемости с коэффициентом 373/273. Отношение rмакс/rмин равно (373/273)2, или 1,87. Таким образом, внешний край зоны обитаемости планеты всего на 87 % шире внутреннего края ее зоны обитаемости. Это узкое пространство.
С учетом поправки на наблюдательную селекцию данные «Кеплера» свидетельствуют, что примерно у каждой десятой солнечноподобной звезды (спектральные классы G и K) есть планета, сопоставимая по размеру с Землей (радиус такой планеты составляет 1–2 земных радиуса), причем интенсивность излучения, получаемого ею от звезды, составляет от 1/4 до четырехкратного уровня относительно аналогичного показателя для Земли. Таким образом, примерно у 10 % солнцеподобных звезд есть похожая на Землю планета, расположенная на расстоянии от 0,5 а.е. до 2 а.е. от своей звезды. Дело в том, что интенсивность излучения убывает по закону обратных квадратов. Планета, удаленная от звезды на 2 а.е., получает вчетверо меньше света, чем Земля, а планета, удаленная на 0,5 а.е., – вчетверо больше. Согласно данным «Кеплера», планеты, похожие на Землю, равномерно распределены по логарифму расстояний от своих звезд. Что это означает? Если взять все планеты, расположенные на расстоянии от 0,5 а.е. до 2 а.е. до звезды, то половина из них окажется на
