Эйнштейн, размышляя об общей природе Вселенной около 1917 года, предложил так называемый космологический принцип: «в больших масштабах в один и тот же момент времени, независимо от места наблюдения, Вселенная выглядит примерно одинаково». Если отойти на достаточное расстояние и оглядеть Вселенную в достаточно крупном масштабе, то вся материя в ней должна быть распределена равномерно. Один из аспектов гипотезы Эйнштейна мы уже обсудили: расширение Вселенной выглядит одинаково из любой галактики. Из этого мы сделали вывод, что у Вселенной нет центра. Аналогично, на бесконечной плоскости нет точки, которую можно было бы назвать «центр», и на искривленной поверхности сферы также нет точки, которую можно было бы обозначить «центр», поскольку все точки на поверхности сферы эквивалентны.
Разумеется, сегодня мы рассматриваем Вселенную, и она выглядит какой угодно, но только не однородной! Масса в нашей Солнечной системе сконцентрирована в планетах и Солнце. Звезды удалены друг от друга на огромные расстояния по сравнению с их размерами. Звезды группируются в галактики, между которыми – миллионы световых лет, а сами галактики группируются в скопления. Согласно космологическому принципу Эйнштейна, следует отойти еще дальше и рассмотреть Вселенную в масштабе тысяч галактик – и в таком случае она покажется нам примерно однородной. Наблюдения Хаббла продемонстрировали, что при подсчете галактик их количество в разных направлениях одинаково; действительно, в самых крупных масштабах Вселенная выглядит однородной.
Фред Хойл развил этот принцип еще на шаг: он утверждал, что Вселенная не просто однородна в пространстве, в какую бы сторону мы ни взглянули – она однородна и во времени. Прошлое должно выглядеть точно так, как и настоящее, решил Хойл. Законы физики со временем не меняются – почему же должна меняться Вселенная? Если воспринимать это утверждение буквально, то у Вселенной не должно быть начала, никакого Большого взрыва; Вселенная существовала всегда. Хойл назвал эту идею совершенный космологический принцип. Учитывая, что из-за расширения Вселенной расстояние между галактиками со временем увеличивается, Хойлу пришлось предположить, что в межгалактическом пространстве создается новая материя, которая, в конечном итоге, идет на образование новых галактик, – пожалуй, это безумная идея, но он считал ее не столь невероятной, как возникновение целой Вселенной из микроскопического объема с бесконечной температурой и плотностью, сопровождающееся к тому же возникновением времени.
Какая из этих картин верна? Продолжая исследовать прогнозы, сделанные в рамках модели Большого взрыва, и сравнивая их с наблюдениями, мы получаем эмпирические подтверждения теории Большого взрыва, и соответствие теоретических данных и наблюдений действительно очень убедительное.
Первый прогноз в модели Большого взрыва заключается в том, что Вселенная должна расширяться, – мы это и наблюдаем. Эта модель также позволяет оценить возраст Вселенной – 13,8 миллиарда лет, – что согласуется с чуть меньшим возрастом древнейших звезд, обнаруженных во Вселенной. Это бесспорный успех модели Большого взрыва: если бы мы нашли звезды возрастом в триллион лет, то вынуждены были бы признать, что модель Большого взрыва ошибочна. Действительно, в прошлом мы уже пережили подобный кризис: первая оценка постоянной Хаббла, сделанная еще самим Хабблом, составляла H0 = 500 (км/c)/Мпк, и в таком случае время, истекшее с момента Большого взрыва (1/H0), оценивалось всего в 2 миллиарда лет. К 1930-м годам по радиоизотопной датировке горных пород уже было ясно, что Земля старше. Ее возраст не согласовывался с моделью Большого взрыва: не могла же Земля быть старше самой Вселенной! Это несоответствие было аргументом в пользу модели Хойла, поскольку он считал Вселенную бесконечно старой и вечно расширяющейся, причем в межгалактическом пространстве в этой модели постоянно образовывались новые галактики. Расхождение удалось устранить в 1950-е и 1960-е годы, когда были гораздо точнее измерены расстояния до галактик. Величина постоянной Хаббла значительно уменьшилась, и число 1/H0 стало согласовываться с возрастом древнейших звезд.
Мы также увидели, что, согласно модели Большого взрыва, на каждое ядро гелия во Вселенной должны приходиться 12 ядер водорода, а на каждое ядро дейтерия – 40 000 ядер обычного водорода, в точности как мы и наблюдаем. Все вполне могло быть иначе; до того, как окончательно оформилась научная спектроскопия, а Сесилия Пейн-Гапошкина и другие определили, что Солнце состоит в основном из водорода, люди практически не представляли себе, какова должна быть относительная распространенность элементов во Вселенной.
Давайте инвентаризируем элементы, существовавшие через несколько минут после Большого взрыва. В принципе, все свободные нейтроны к тому моменту уже оказались в ядрах гелия. Ядерное горение прекращается, поскольку Вселенная уже слишком холодная и разреженная, и в ней не могут возникать новые реакции. Вдобавок к этим ядрам гелия и следовым количествам дейтерия и лития у нас также есть протоны, электроны, нейтрино и фотоны – раньше были еще позитроны, но они аннигилировали с электронами, образовав дополнительные фотоны. Осталось ровно столько электронов, что они уравновешивают общий заряд всех протонов. По-прежнему очень жарко, а горячие объекты, как известно, излучают фотоны, поэтому окружающая среда также изобилует фотонами. Температура и плотность Вселенной продолжают падать, но состав Вселенной не меняется еще на протяжении около 380 000 лет.
В течение этого периода вся материя во Вселенной находится в состоянии плазмы (как в недрах звезд): атомные ядра и электроны не связаны, а движутся независимо друг от друга. Если протон ненадолго захватывает электрон и образуется нейтральный атом водорода, в него очень скоро попадает один из многочисленных высокоэнергетических фотонов, отрывающий электрон от протона. Более того, поскольку фотоны так активно взаимодействуют со свободными электронами (теми, которые не заключены в атомы), фотон не успевает улететь далеко, а почти сразу сталкивается с другим электроном и отскакивает от него (на научном языке говорят «рассеивается») в ином направлении. Я имею в виду, что Вселенная в те времена была непрозрачной; она немного напоминала густой туман, в котором почти ничего перед собой не видишь. Примерно аналогичные условия мы находим в недрах звезд: они непрозрачны, а энергия, выделяющаяся в ядре в виде фотонов, просачивается до поверхности звезды очень долго – фотон тратит на это около пары сотен тысяч лет.
Ситуация радикально изменилась, как только температура упала примерно до 3000 К, это произошло где-то через 380 000 лет после Большого взрыва. К этому моменту у фотонов уже не хватает энергии, чтобы ионизировать водород, электроны и протоны начинают