Цвикки понимал, насколько он умен, и не стеснялся высказывать собственное мнение, если считал, что другие ошибаются. Не имея доступа к пятиметровому Паломарскому телескопу, Цвикки выполнял почти всю работу на миниатюрном исследовательском телескопе Паломарской обсерватории с диаметром зеркала всего 46 сантиметров и при помощи этого телескопа открывал сверхновые (за всю жизнь он нашел более 100 таких объектов), а еще каталогизировал галактики. Он заметил, что некоторые из зафиксированных им галактик были довольно компактными, на вид почти как звезды. Но поскольку он не мог работать с пятиметровым Паломарским телескопом, Цвикки был не в состоянии измерить спектры этих галактик и определить их физическую природу. Позже оказалось, что некоторые из замеченных им компактных галактик являются квазарами того же типа, какие впоследствии открывали Шмидт и Сендидж, поэтому Цвикки небезосновательно заявлял, что именно ему принадлежит честь этого открытия.
Аспиранты из Калтеха любили Цвикки – он устроил кабинет рядом с их помещениями на цокольном этаже в здании астрономического факультета в кампусе. Цвикки скончался в 1974 году; мой коллега Джим Ганн, который в 1960-е годы учился в аспирантуре Калтеха, и Рич Готт, который был там постдоком в 1973–1974 годы, с удовольствием вспоминают его.
Принципиальная догадка Цвикки была верной. В некоторых компактных галактиках имелись непонятные точечные источники света, обладавшие невероятной светимостью (квазары). Такой источник сиял из центра галактики и затмевал ее сравнительно тусклые окружающие области. Поэтому и сама галактика становилась похожей на точку, как звезда.
Этот феномен хорошо заметен на снимках квазаров, сделанных при помощи космического телескопа «Хаббл»: на этих четких изображениях просматривается свет, идущий от квазара, а также тусклое размытое свечение самой галактики, в которой он находится. Эти снимки сделала моя жена София Кирхакос совместно с коллегами Джоном Бакалом и Доном Шнайдером, так что мне особенно приятно публиковать их в этой книге (рис. 16.3). В центре каждого изображения – очень яркий точечный источник света; это сам квазар. Его окружает галактика (а в одном из случаев – даже пара галактик, которые, по-видимому, сталкиваются); заметны спиральные рукава. Подобные изображения снимают все вопросы относительно расстояний: квазары действительно удалены от нас настолько, насколько позволяет судить их красное смещение (это совсем не какие-то экзотические звезды в Млечном Пути), и, следовательно, квазары обладают невероятной светимостью.
Чтобы понять, что представляет собой феномен квазара, вернемся к спектру 3C 273. Эмиссионные линии у этого объекта широкие, они захватывают большие волновые диапазоны, хотя в главе 6 мы и говорили о том, что атомные переходы соответствуют конкретным, абсолютно точным энергиям и, соответственно, длинам волн. Это явление считается одним из эффектов доплеровского смещения: внутри квазара находится газ, движущийся одновременно с разными скоростями. Сам квазар удаляется от нас примерно на 16 % скорости света, но относительно этого общего движения некоторые газовые области движутся навстречу нам (голубое смещение эмиссионных линий относительно среднего значения), а некоторые – от нас (и эти области характеризуются даже большим красным смещением, чем сам квазар). Поэтому эмиссионная линия расширяется. Допустим, эмиссионная линия соответствует излучению газа, вращающегося вокруг массивного центра: газ распределен по всей круговой орбите, есть в каждой ее точке, и каждая из этих точек обладает своим компонентом движения вдоль луча зрения и, соответственно, собственным доплеровским смещением. Такая широкая эмиссионная линия соответствует целому диапазону доплеровских смещений.
Рис. 16.3. Квазары и галактики, в которых они находятся. Снимки космического телескопа «Хаббл». Снимки предоставлены: J. Bahcall и M. Disney, NASA
Можно развить эту картину. Ширина эмиссионной линии позволяет судить, как быстро движется газ; типичное значение для квазара – 6000 км/c. Что-то заставляет газ вращаться с такой чудовищной скоростью. Предположим, что эти движения обусловлены гравитацией: то есть газ движется по орбите вокруг центрального объекта, и хотелось бы понять, что это за объект.
Каков радиус этой орбиты? Если бы удалось его определить, то можно было бы воспользоваться законами Ньютона и нашими знаниями о скорости, чтобы вычислить, насколько массивен должен быть этот центральный объект. Мы уже знаем, что квазары кажутся точечными (напоминают звезды) и, следовательно, они слишком малы, что не позволяет рассмотреть их в наши телескопы. Судить об их истинном размере стало проще после следующего открытия: оказалось, что квазары переменные; их яркость значительно меняется за период около месяца.
Допустим, что свет от квазара поступает из области, имеющей один световой год в поперечнике. Свет, прилетающий с «лицевой» (обращенной к нам) стороны квазара, прибудет к нам на год раньше, чем свет с его тыльной стороны. Даже если бы светимость всего этого тела каким-то образом мгновенно удвоилась, то фиксируемая нами яркость постепенно нарастала бы в течение года, пока нас достигал бы свет сначала с лицевой и, наконец, с тыльной стороны квазара. Следовательно, тот факт, что яркость квазара периодически меняется примерно за месяц, говорит о следующем: диаметр квазара вряд ли значительно превышает один световой месяц. Это поразительно небольшой размер: как вы помните, расстояния между звездами в нашем Млечном Пути составляют по несколько световых лет, а этот объект диаметром один световой месяц (или даже меньше) излучает столько энергии, сколько несколько сотен обычных галактик.
Теперь нам известно, с какой скоростью движется газ в квазаре, а также насколько этот газ удален от источника гравитации, приводящего его в движение. Можно повторить те же расчеты, которыми мы занимались в главе 12, когда определяли массу Млечного Пути по параметрам галактической орбиты Солнца: масса пропорциональна квадрату скорости, умноженному на радиус. Выполнив такие вычисления для квазара, находим, что масса его ошеломляюще велика и составляет 2 × 108 солнечных масс.
Резюмируем: квазары располагаются в центрах галактик, их диаметр составляет не более одного светового месяца, их светимость