Перекрёстная проверка — неприятная штука, когда имеешь дело с налоговой инспекцией, но в науке это хорошая вещь. Проект Boomerang дал космологам возможность провести две перекрёстные проверки бюджета космической материи:
1. Мы измерили долю тёмной энергии двумя разными способами (по сверхновым типа Ia и по пикам космического микроволнового излучения), и результаты сошлись.
2. Мы измерили долю обычной материи двумя разными способами (по первичному нуклеосинтезу и по пикам космического микроволнового излучения), и результаты не сошлись, так что по крайней мере один из методов был ошибочным.
Пик возвращается
Год спустя в шикарном зале для пресс-конференций в Вашингтоне я сижу в кресле, как приклеенный, чувствуя себя так, словно с минуты на минуту в комнату войдёт Санта-Клаус, да не один, а целых три. Первым был Джон Карлстрем, сообщивший результаты, полученные микроволновым телескопом DASI на Южном полюсе. После разглагольствований об уже известных мне технических деталях — бум! — выясняется, что получен самый замечательный график спектра мощности из всех, какие мне встречались — с тремя отчётливыми пиками. Затем появился Санта № 2: Джон Рал из Boomerang. Опять разглагольствования, и снова — бум! Ещё один замечательный спектр мощности с тремя пиками, прекрасно согласующийся с измерениями DASI. Причём некогда невзрачный второй пик заметно подрос после того, как они усовершенствовали конструкцию телескопа. Наконец, Санта № 3: Пол Ричардс сообщил результаты измерений в ходе аэростатного эксперимента MAXIMA, которые согласовывались с остальными данными. Я был в восторге. Столько лет я мечтал об уликах, закодированных в микроволновом фоне, и вот они! Это было так дерзко — считать, что мы знаем, что именно Вселенная делала всего через несколько сотен тысяч лет после Большого взрыва, — и всё же мы оказались правы. В эту ночь я быстро перезапустил свою программу подбора модели с новыми данными о микроволновом фоне, и теперь, когда второй пик стал выше, мой код предсказал 5 % атомов — в полном согласии с теорией первичного нуклеосинтеза. Перекрёстная атомная проверка из провала превратилась в успех, порядок в космосе был восстановлен. Этот порядок сохранился до сих пор: WMAP, «Планк» и другие проекты измерили кривую спектра мощности ещё точнее, но, как видно на рис. 4.2, в трёх первых экспериментах всё было определено правильно.
Точные данные о кластеризации галактик
К 2003 году фон космического микроволнового излучения стал, пожалуй, величайшим в истории успехом космологии. Многие увидели в нём панацею, способную решить все наши проблемы и измерить все ключевые параметры космологических моделей. Это впечатление было ошибочным. Допустим, проведя измерения, вы определили, что мой вес составляет 90 кг. Очевидно, этой информации недостаточно, чтобы узнать мой рост и объём талии, поскольку вес зависит от обоих этих параметров: я могу оказаться высоким и тощим или низким и упитанным. Мы сталкиваемся с похожими проблемами, когда пытаемся измерить ключевые параметры Вселенной. Например, характерные размеры пятен микроволнового фона, соответствующие положениям пиков спектра мощности на горизонтальной оси (рис. 4.2), зависят и от кривизны пространства (которая увеличивает либо уменьшает эти пятна), и от плотности тёмной энергии (которая изменяет скорость расширения Вселенной, а значит, и расстояние до плазменной поверхности с её пятнами, что также заставляет их казаться крупнее или мельче). Поэтому, хотя многие журналисты заявляли, что такие эксперименты, как Boomerang и WMAP продемонстрировали плоскую геометрию пространства, на самом деле это не так: Вселенная может быть и плоской, содержащей около 70 % тёмной энергии, и искривлённой, с иным количеством тёмной энергии. Есть и другие пары космологических параметров, которые трудно разделить на основе анализа микроволнового фона. Например, амплитуда неоднородностей в ранней Вселенной и время появления первых звёзд влияют на спектр мощности (рис. 4.2) сходным образом (в данном случае меняя высоту пиков). Как известно из школьной алгебры, для определения двух величин требуется более одного уравнения. В космологии мы хотим определить около 7 параметров, и в одном только микроволновом фоне для этого просто недостаточно данных. Так что необходима дополнительная информация из других космологических измерений. Например, из трёхмерных карт галактик.
Обзоры красных смещений галактик
Когда мы строим трёхмерную карту расположения галактик во Вселенной, мы сначала анализируем двумерные фотографии неба, чтобы найти галактики, а затем проводим дополнительные измерения, чтобы определить, насколько далеко галактики находятся. Самый масштабный пока проект трёхмерного картографирования называется Слоуновским цифровым обзором неба (SDSS). (Мне повезло в нём поучаствовать, когда я был постдоком в Принстоне.) Более десяти лет небольшой армии специалистов понадобилось, чтобы отснять треть неба с помощью специально построенного в Нью-Мексико 2,5-метрового телескопа и получить двумерную карту неба (рис. 4.4). Принстонский профессор Джим Ганн, напоминавший мне добродушного волшебника, использовал свою магическую силу, чтобы построить для этого телескопа поразительную цифровую камеру, самую большую из когда-либо применявшихся для решения астрономических задач.
Рис. 4.4. Количество информации в Слоуновском цифровом обзоре неба поразительно. Левый рисунок, представляющий всё небо, содержит почти терапиксел — миллион мегапикселов. Последовательно увеличивая фрагменты, мы добираемся до галактики Водоворот, находящейся в созвездии Большой Медведицы, но такой же уровень детализации доступен в любой точке изображения. (Иллюстрация: Майк Блэнтон и Дэвид Хогг/Коллаборация SDSS.)
Если вы приглядитесь к изображениям неба в этом обзоре (рис. 4.5), вы обнаружите множество звёзд, галактик и других объектов — их там более полумиллиарда. Это означает, что если вы попросите аспиранта отыскать все объекты, то, затрачивая на каждый по одной секунде и работая 8 часов в день без перерывов и выходных, он справится с этой работой за 50 лет, а вы получите награду как худший в истории научный руководитель. Поиск этих объектов оказался на удивление сложным даже для компьютера: необходимо уметь различать галактики, звёзды (которые казались бы точечными, если бы не атмосферное размытие), кометы, спутники и т. д. Хуже того, объекты накладываются друг на друга — например, близкая звезда досадным образом оказывается на фоне далёкой галактики. Несколько лет спустя эту проблему удалось решить благодаря героическим программистским усилиям Роберта Лаптона, весёлого англичанина, который подписывал электронные письма «Роберт Лаптон Добрый» и всегда ходил босиком (рис. 4.5).
Следующий шаг — понять, на каком расстоянии находится каждая галактика.