Рис. 4.7. Сравнительно с наблюдаемой частью Вселенной (слева) её доля, которая была картографирована (в центре), очень мала и охватывает менее 0,1 % объёма. Как и в случае с Австралией в 1838 году (справа), на карту нанесена лишь полоска по периметру, а большая часть внутренней территории остаётся неисследованной. Окружность на среднем рисунке — это плазма (излучение, составляющее наблюдаемый нами космический микроволновый фон, поступает лишь из её тонкого внутреннего серого края). Небольшая структура вблизи центра — крупнейшая на данный момент трёхмерная карта галактик, построенная на основе данных Слоуновского цифрового обзора неба.
Если бы мы смогли нанести на карту неисследованные части Вселенной, космологию ожидал бы колоссальный прогресс. Мы бы не только тысячекратно расширили свою космологическую осведомлённость, но и (далеко — значит давно) узнали бы подробности того, что происходило в первой половине нашей космической истории. Однако как это сделать? Все методы, которые мы обсуждали, продолжают впечатляющим образом развиваться, но, к сожалению, в обозримой перспективе они, видимо, не позволят картографировать большую долю неохваченного картами 99,9 % объёма Вселенной. Эксперименты по картографированию космического микроволнового фона затрагивают в основном границу этого объёма, поскольку внутри он большей частью прозрачен для микроволн. На таких расстояниях большинство галактик становятся настолько тусклыми, что их трудно увидеть даже в лучшие телескопы. К тому же значительная часть этого объёма настолько удалена, что вовсе не содержит галактик — мы заглядываем в настолько далёкое прошлое, когда большинство их ещё не сформировалось!
Картографирование водорода
К счастью, существует другая технология картографирования. То, что мы считаем пустотой, в действительности не совсем пусто: межгалактическое пространство заполняет газообразный водород. Кроме того, физики давно знают, что газообразный водород испускает радиоволны длиной 21 см, которые можно регистрировать с помощью радиотелескопов. (Когда мой однокурсник Тед Банн преподавал в Беркли и коснулся этой темы, один студент задал ему вопрос: «А какая длина волны у линии длиной 21 см?») Это значит, что, хотя водород невидим для обычных телескопов, посредством радиотелескопов его, в принципе, можно «увидеть» в большей части Вселенной, в том числе задолго до того, как образовались звёзды и галактики. И можно построить трёхмерные карты распределения газообразного водорода, используя явление красного смещения, которое обсуждалось в гл. 2: поскольку радиоволны при расширении Вселенной растягиваются, длина регистрируемых на Земле волн указывает, с какого расстояния (а значит, из какого времени) они к нам пришли. Например, волны, которые, приходя к нам, имеют длину 210 см, были растянуты в 10 раз, а значит, испускались они, когда Вселенная была в 10 раз меньше, чем сегодня. Эту методику называют томографией на волне 21 см, и поскольку она может привести к следующему прорыву в космологии, к ней привлечено большое внимание. В гонку включились многие научные группы, которые стремятся первыми в мире надёжно зарегистрировать едва уловимый сигнал водорода, находящегося на полпути до края Вселенной, однако пока никто в этом не преуспел.
Что такое телескоп?
Почему это так трудно? Потому что сигнал очень слаб. Что нужно для регистрации чрезвычайно слабых сигналов? Чрезвычайно большой телескоп. Скажем, площадью 1 км2. Что нужно для постройки чрезвычайно большого телескопа? Чрезвычайно большой бюджет. Но всё-таки — насколько большой? Вот тут интереснее! Стоимость традиционных радиотелескопов вроде того, что на рис. 4.8, более чем удваивается при удвоении площади, и в некоторый момент становится абсурдно высокой.
Поэтому во всех экспериментах, стремящихся осуществить томографию на волне 21 см, используется более современный тип радиотелескопов, называемых интерферометрами. Поскольку свет и радиоволны — это электромагнитные явления, они, распространяясь, создают электрическое напряжение между различными точками пространства. Это, конечно, очень низкое напряжение, во много раз слабее 1,5 В между контактами батарейки, но и его можно уловить с помощью хороших антенн и усилителей. Основная идея интерферометрии такова: с помощью массива радиоантенн измерить большое число таких напряжений и с помощью компьютера по этим данным реконструировать вид неба. Если все антенны расположены в горизонтальной плоскости, как на рис. 4.8 (на переднем плане), то волна, пришедшая прямо сверху, достигнет их одновременно. Волны, идущие под углом, достигнут некоторых антенн раньше, чем других, и компьютер использует этот факт для определения их направления. Наш мозг пользуется тем же методом при определении источника звука: если левое ухо слышит звук раньше правого, то звук, очевидно, приходит слева. Точно оценив разницу во времени, мозг может даже оценить, идёт звук строго слева или под углом. Имея только два уха, вы не можете определить угол точно и справились бы с задачей гораздо лучше, будь у вас, наподобие большого радиоинтерферометра, сотни ушей по всему телу (хотя, возможно, это выглядело бы не очень хорошо). Идея интерферометра, предложенная Мартином Райлом в 1946 году, оказалась невероятно успешной и принесла ему Нобелевскую премию в 1974-м.
Рис. 4.8. Радиоастрономия с большим бюджетом (на заднем плане) и с малым (на переднем плане). Во время экспедиции в обсерваторию Гринбэнк в Западной Виргинии мой аспирант Энди Лютомирски возится с электронным оборудованием, спрятанным в палатку от дождя.
Однако главное затруднение при измерении этих различий во времени связано с тем, что вычисления приходится проводить для каждой пары антенн (или ушей), и количество таких пар растёт примерно как квадрат числа антенн. Это означает, что если увеличить количество антенн в тысячу раз, стоимость компьютера подскочит в миллион раз! А вы-то хотели, чтобы астрономическим был телескоп, а не бюджет! Поэтому интерферометры до сих пор ограничивались десятками или сотнями антенн, тогда как для томографии на волне 21 см их требуется около миллиона.
Когда я перебрался в Массачусетский технологический институт, мне великодушно позволили присоединиться к американо-австралийскому эксперименту по томографии на волне 21 см, которым руководила моя коллега Джеки Хьюит. На встречах, посвящённых нашему проекту, я иногда фантазировал, как бы удешевить строительство огромных телескопов. И вот однажды во время такой встречи в Гарварде у меня в голове щёлкнуло: дешёвый способ есть!
Омнископ
Я рассматриваю телескоп как машину