Ещё один обширный класс математических структур соответствует различным пространствам. Например, трёхмерное евклидово пространство, которое мы изучаем в школе, — это математическая структура. Здесь элементами выступают точки трёхмерного пространства и вещественные числа, которые интерпретируются как расстояния и углы. Существует множество других типов отношений. Например, три точки могут удовлетворять тому отношению, что они лежат на одной прямой. Существуют различные математические структуры, соответствующие евклидову пространству с четырьмя и любым другим числом измерений. Математики также открыли множество других типов пространств более общего вида, которые образуют собственные математические структуры, вроде пространства Минковского, римановых, гильбертовых, банаховых и хаусдорфовых пространств. Многие думают, что наше трёхмерное физическое пространство является евклидовым. Однако в гл. 2 мы узнали, Эйнштейн положил этому конец. Сначала его специальная теория относительности показала, что мы живём в пространстве Минковского (включающем время в качестве четвёртого измерения), а затем общая теория относительности заменила пространство Минковского римановым пространством, то есть способным искривляться. Затем появилась квантовая механика (гл. 7), утверждающая, что на самом деле мы обитаем в гильбертовом пространстве. И вновь точки этих пространств ни из чего не сделаны и не имеют цвета, текстуры или каких-либо иных собственных свойств.
Хотя наша коллекция известных математических структур обширна и необычна и ещё больше их пока не открыто, каждую математическую структуру можно проанализировать на предмет симметричности, и у многих обнаруживаются интересные симметрии. Крайне любопытно, что одним из самых важных открытий в физике стало наличие встроенных симметрий и у нашей физической реальности. Так, законы физики обладают вращательной симметрией, то есть во Вселенной нет выделенного направления, которое можно было бы назвать «верхом». Они также, по-видимому, имеют трансляционную симметрию (относительно сдвига), то есть нет особого места, которое можно было бы назвать центром пространства. Многие из упомянутых выше пространств обладают красивыми симметриями, порой совпадающими с наблюдаемыми симметриями физического мира. Например, евклидово пространство обладает как вращательной (нельзя обнаружить различия, если пространство поворачивается), так и трансляционной симметрией (нельзя обнаружить отличия, если пространство сдвигается). У четырёхмерного пространства Минковского ещё больше симметрий, и нельзя обнаружить различий, если выполнен обобщённый поворот между пространственным и временным измерениями (Эйнштейн показал, что именно поэтому кажется, что время замедляется, когда вы движетесь с околосветовой скоростью). В XX веке было открыто множество более тонких симметрий природы. Они лежат в основе эйнштейновских теорий относительности, квантовой механики и Стандартной модели элементарных частиц.
Обратите внимание: свойства симметрии, столь важные для физики, появляются именно благодаря отсутствию собственных свойств у «строительных блоков» реальности, то есть из самой сути того, что значит для неё быть математической структурой. Если выкрасить часть бесцветной сферы в жёлтый, её вращательная симметрия будет нарушена. Подобным образом, если бы точки трёхмерного пространства обладали свойствами, которые делали бы одни точки внутренне отличными от других, пространство утратило бы свою вращательную и трансляционную симметрию. «Меньше — это больше» в том смысле, что чем меньше свойств имеют точки, тем больше симметрий у пространства.
Если гипотеза математической Вселенной верна, то наша Вселенная является математической структурой, и из её описания бесконечно разумный математик должен иметь возможность вывести все физические теории. Как именно он это сделает? Мы не знаем. Но я уверен, что первым его шагом стало бы определение симметрий этой математической структуры.
В начале этой главы вы узнали мрачное предсказание: мои публикации относительно связи между математикой и физикой безумны и похоронят мою карьеру. Пока я изложил лишь часть обоснований того, что внешняя физическая реальность является математической структурой. Это действительно звучит безумно, однако мы лишь разминаемся. Когда мы займёмся следствиями и проверяемыми предсказаниями, вытекающими из гипотезы математической Вселенной, всё станет ещё безумнее! Кроме прочего, мы придём к неизбежному выводу о новом мультиверсе, столь огромном, что в сравнении с ним поблёкнет даже мультиверс III уровня в квантовой механике. Но прежде предстоит ответить на острый вопрос. Наш физический мир меняется во времени, тогда как математические структуры неизменны — они просто существуют. Так как же наш мир может быть математической структурой?
Резюме
• С древних времён людей мучила загадка: почему наш физический мир можно успешно описать с помощью математики.
• Физики продолжают открывать в природе формы, схемы и закономерности, которые удаётся описывать математическими уравнениями.
• Ткань нашей физической реальности содержит десятки безразмерных чисел, исходя из которых, в принципе, можно вычислить все измеримые постоянные.
• Некоторые физические сущности, например пустое пространство, элементарные частицы и волновая функция, кажутся чисто математическими в том смысле, что все присущие им свойства являются математическими.
• Гипотеза внешней реальности (ГВР), состоящая в том, что существует внешняя физическая реальность, совершенно независимая от людей, признаётся большинством физиков.
• При достаточно широком определении математики из ГВР вытекает гипотеза математической Вселенной (ГМВ), утверждающая, что наш физический мир является математической структурой.
• Это означает, что наш физический мир не только описывается математикой, но и является математической структурой, что делает нас самосознающими частями гигантского математического объекта.
• Математическая структура — это абстрактное множество сущностей с отношениями между ними. Эти сущности не имеют «багажа»: кроме этих отношений они не обладают никакими свойствами.
• Математическая структура может обладать интересными свойствами, например симметриями, несмотря на то, что ни входящие в неё сущности, ни отношения между ними не обладают собственными свойствами.
• ГМВ разрешает пользующуюся дурной славой проблему бесконечного регресса. Она заключается в том, что свойства природы можно объяснять лишь свойствами её частей, которые требуют дальнейшего объяснения, и так до бесконечности: свойства природы возникают не из свойств её самых фундаментальных «строительных блоков» (которые не обладают никакими свойствами), а из отношений между «блоками».
Глава 11. Иллюзорно ли время?
Различие между прошлым, настоящим и будущим — не более чем иллюзия.
Альберт Эйнштейн Из письма к Микеланджело Бессо (1955)Время — это иллюзия, а обеденное время — тем более.
Дуглас Адамс «Автостопом по Галактике»[69]Если вы похожи на меня, вас также беспокоят вопросы без ответа. В предыдущей главе я поднял много таких, и правильно, если вы поставите сказанное мной под сомнение. Например, я убеждал вас, что наша внешняя физическая реальность — это математическая структура, но что именно означает эта фраза? Физическая реальность изменчива: ветер уносит листья, планеты обращаются вокруг Солнца. А математические структуры статичны: абстрактный додекаэдр имел, имеет