Если соотношение частот любых двух соседних нот равно r (условие 2), а соотношение частот двенадцатой и первой ноты равно 2 (условие 1), то r12 = 2. Следовательно,
Если настроить музыкальные инструменты таким образом, чтобы соотношение частот соседних нот в октаве было равно не придется перенастраиваться при переходе в другую тональность. Этот музыкальный строй называют равномерно темперированным[51], и сегодня им пользуются все профессиональные музыканты.
К сожалению, число иррационально[52]. Иными словами, соотношение частот двенадцати нот в равномерно темперированном строе (за исключением начала и конца октавы) не может быть выражено через соотношение целых чисел. Соотношение частот до и соль в таком случае равно не 3:2, а примерно 1,4983 (число принято округлять до 1,5).
Как это звучит? Сейчас почти все музыкальные инструменты настраивают по равномерно темперированному строю, и они ласкают наш слух. Но что мы теряем?
Вот как выглядит звуковая волна для трезвучия до мажор. В первом варианте частоты нот соотносятся как 4:5:6, во втором подобраны в соответствии с равномерно темперированным строем. Первый вариант выглядит (и звучит!) гораздо гармоничнее.
Преимущество равномерно темперированного строя состоит в том, что в нем нет необходимости постоянно перенастраивать музыкальные инструменты. Но есть один инструмент, способный менять тональность мгновенно: человеческий голос.
Вокальные ансамбли без инструментального сопровождения (например, «парикмахерские» квартеты[53]) не нуждаются в равномерно темперированном строе и берут ноты, соотношение частот которых можно выразить целыми числами. И мы слышим чудесные хорошо резонирующие звуки.
Глава 5
i
Еще одна головоломка квадратного корняВ главе 4 мы поразмышляли над «точным» значением числа √2 и пришли к выводу, что его нельзя выразить в виде соотношения двух целых чисел и, следовательно, оно иррационально. Тем не менее мы можем найти его значение с невероятной точностью.
Число √2 не относится к рациональным числам, однако нас не мучает вопрос, существует ли такое число, что x² = 2. Несмотря ни на что, √2 имеет законную прописку где-то между 1,41 и 1,42. Это пример действительного числа[54]. Оно может быть выражено так:
± XXXX, XXXXXXXXXX…
Символом X помечены разные цифры. Число может быть положительным или отрицательным (знак + перед числом ставить не принято), количество цифр до запятой конечно, количество цифр после запятой бесконечно. Скажем, 1⅔ можно записать так[55]:
1,666666666666…
Такие числа, как 3/4, в десятичной системе счисления записываются с конечным числом цифр после запятой (0,75), но ничто не мешает прикрутить справа бесконечное количество нулей: 0,7500000000…
Таким образом, – реальное число, просто иррациональное. Точнее говоря, существует такое число, что x² = 2. Точно так же существует такое число, что x² = 3, а именно И так далее… Или нет?
Всякое ли уравнение x² = a имеет решение? Если a – положительное действительное число (или ноль), тогда решение равно и ответ можно записать в виде десятичного числа сколько угодно точно. Если мы изобразим график y = x² – a (для любого квадратного уравнения он представляет собой параболу), решением будут те точки, где кривая пересекает ось абсцисс, или ось x. Иными словами, это такие значения x, при которых x² = a. На первом рисунке вы можете видеть графики y = x² – 3 и y = x² – 7. Первая парабола пересекает ось абсцисс при вторая парабола – при
Вопрос кардинально меняется, когда мы ищем такое число, что x² = –1. А существует ли оно в принципе? Если возвести в квадрат положительное число, ответом будет положительное число, скажем 5² = 5 × 5 = 25 > 0. Если возвести в квадрат отрицательное число, результат снова будет положительным числом: (–5)² = (–5) × (–5) = 25 > 0. Если возвести в квадрат ноль, получится ноль. Наше положение выглядит безнадежно.
Мы испытаем еще большее отчаянье, когда нарисуем график уравнения y = x² + 1 и увидим, что парабола нигде не пересекает ось абсцисс.
Есть искушение сдаться и объявить: «Нельзя извлекать квадратные корни из отрицательных чисел». На самом деле нам просто не хватает воображения. Да, не существует ни одного действительного числа, удовлетворяющего условию x² = –1, но, возможно, есть какие-то другие?
Мнимые числаРешение на редкость просто. Раз нет такого действительного числа, что x² = –1, то мы просто создадим новое число, назовем его i и поставим условие i² = –1.
Конечно, в голове сразу зазвучит сигнал тревоги: «Откуда взялось это число? Выдумывать числа нельзя! Что за чепуха!»
Чтобы облегчить душу, назовем новое число мнимым[56]. В наших глазах такое число – второго сорта: мы не кладем i кубиков сахара в чашку кофе и не боимся, что расстояние до университета окажется равным i миль[57].
Мы просто решили поиграть и сами придумали правила. Хорошо, теперь давайте поразмышляем. Посмотрим, на что годно это число i. Мы знаем, что i × i = –1. А как насчет i + i? Если следовать привычным арифметическим правилам, то получится другое мнимое число: 2i. А что, если возвести это число в квадрат? Попробуем!
(2i) ² = (2i) × (2i) = 2 × i × 2 × i = 2 × 2 × i × i = 4 × (i × i) = 4 × (–1) = –4.
Другими словами, число 2i представляет собой квадратный корень из числа –4.
Теперь возведем в квадрат и посмотрим, что получится:
Таким образом, представляет собой квадратный корень из числа –2. Когда мы приютили мнимое число i в семье всех чисел, мы заполучили не просто а в придачу еще и квадратные корни из всех отрицательных действительных чисел! Любое число вида b × i, где b – это действительное число, называют мнимым числом.
Если сложить два мнимых числа, например 2i и 4i, мы получим другое мнимое число: 6i. Если мы перемножим два мнимых числа, например 3i и –2i, то получим действительное число:
3i × (–2i) = 3 × (–2) × i × i = (–6) × (–1) = 6.
Комплексные числаЧтобы мнимые числа прижились в семье всех чисел, нужно научиться складывать, вычитать, умножать и делить мнимые и действительные числа вместе. Мы будем работать с множеством комплексных чисел. Это расширение множества действительных чисел, включающее все числа вида a + bi, где a и b – действительные числа, например 3 + 4i.
Само число i комплексное, потому что может быть представлено в