Вероятность меняется и дальше, но на ничтожно малую величину.
Хорошенько подумав, мы можем вывести формулу зависимости вероятности того, что никто из N зрителей не получит свою шляпу, от числа N:
Например, при N = 4
Это согласуется с нашими предыдущими выкладками.
В пределе, когда N стремится к бесконечности, вероятность того, что никто не получит свою шляпу, равна
Этот ряд уходит в бесконечность. Обратите внимание, что эта формула похожа на формулу (A) для подсчета числа e. Сумма ряда (B) равна Мы снова встретили наше заветное число!
Уже при N = 10 сумма ряда будет равна
Это достаточно близко к следующему значению:
Среднее расстояние между двумя простыми числамиВ главе 1 я доказал, что простых чисел бесконечно много. Вы увидели, что среди небольших целых положительных чисел простые числа встречаются достаточно часто, но, когда мы уходим в бесконечность, простые числа начинают попадаться все реже. Мы можем с некоторой точностью установить, насколько редко встречаются простые числа, если попытаемся найти среднее расстояние между ними[76].
Какие простые числа можно найти между 1 и 20?
2, 3, 5, 7, 11, 13, 17, 19.
Промежутки (разности) между этими числами следующие:
1, 2, 2, 4, 2, 4, 2.
Следовательно, среднее расстояние между ними равно:
Теперь посчитаем, сколько простых чисел между 1 и 1000. Всего их 168: начиная с 2, 3 и 5 и заканчивая 983, 991 и 997. Среднее расстояние между соседними простыми числами в этом случае составит:
Знаменатель равен 167, так как простых чисел 168, а промежутков между ними на 1 меньше. Числитель можно посчитать довольно просто. Обратите внимание, что число 3 встречается дважды с разными знаками. Та же история с числом 5. Разумеется, это верно для всех чисел, кроме первого и последнего[77]. Таким образом, нам достаточно вычесть 2 из 997. Получается, что среднее расстояние между простыми числами от 1 до 1000 равно
Это в два с лишним раза больше, чем в случае, когда мы брали числовой ряд от 1 до 20.
Введем обозначение agap(N) для среднего расстояния между простыми числами от 1 до N. Тогда наши предыдущие расчеты могут быть записаны в таком виде:
Вычислим среднее расстояние между простыми числами от 1 до N, когда N равно 100, 1000, 10 000 и так далее до 1 000 000 000. И округлим результат до тысячных:
Легко заметить: когда N становится больше в десять раз, agap(N) возрастает примерно на 2,3.
Мы можем проиллюстрировать эту закономерность на графике. Будем отмечать число N по оси абсцисс и agap(N) по оси ординат. Масштаб по оси ординат оставим обычным, а по оси абсцисс разница между делениями пусть постоянно возрастает в 10 раз (это называется логарифмическая шкала):
Обратите внимание: звездочки выстроились почти в прямую линию. Если присмотреться, левый нижний конец нашей кривой слегка загибается вверх.
Если бы звездочки на графике в точности выстроились в линию, мы получили бы следующую формулу, включающую число Эйлера:
N = ea + 1. (C)
Здесь а=agap(N) Скажем, если N = 1012, то agap(N) ≈ 26,59. Для выполнения (C) необходимо, чтобы a ≈ 26,63, и наш результат близок к этому числу.
Чудесная формулаТри главы были посвящены трем важным числам: π, i, e. Хотите верьте, хотите нет, но все они встречаются в одной формуле (которую вывел Эйлер):
eiπ + 1 = 0.
Формула поражает невероятным изяществом и простотой, однако как можно возводить число в мнимую степень?!
Мы знаем, как возвести e в целую положительную степень. Например, e³ = e × e × e. Отрицательная степень – это произведение дробей: Дробные степени могут быть выражены через квадратные корни, кубические корни и т. д.: Можно посчитать даже такую жутковатую величину, как
Но eiπ не вписывается в эти стандарты. Нам нужен иной принцип[78].
Мы знаем, что e представляет собой сумму бесконечного ряда:
Для любого x значение ex будет:
Скажем, в случае x = –1 мы получим знакомый по казусу со шляпами ряд (B):
Чтобы узнать, чему равно eiπ, подставим iπ вместо x:
Чему равны числители дробей в этой сумме?
(iπ) ² = (iπ) × (iπ) = i² × π² = – π².
(iπ) ³ = i × i × i × π³ = –1 × i × π³ = –iπ³.
(iπ) ⁴ = i⁴ × π⁴ = π⁴.
(iπ) ⁵ = –iπ⁵.
(iπ) ⁶ = –π⁶.
(iπ) ⁷ = –iπ⁷.
(iπ) ⁸ = π⁸.
Элементы ряда поочередно оказываются то действительными, то мнимыми. Сгруппируем эти две категории элементов:
Оказывается, что выражение между первыми двумя скобками представляет собой в точности cos(π), то есть –1, а выражение между вторыми скобками равно sin(π), то есть 0. Таким образом,
eiπ = cos(π) + i sin(π) = –1 + 0i = –1.
Теперь мы понимаем, как возникла чудесная формула Эйлера.
Глава 8
∞
«В бесконечность и дальше!» – таков был лозунг Базза Лайтера, бесстрашного космического рейнджера из мультфильма «История игрушек». Эта фраза вызывает смех, ибо абсурдна: куда уж дальше бесконечности? Если что-то бесконечно велико, то может ли существовать что-то большее? Такие вопросы кажутся безумными, и математики до поры до времени предпочитали их не задавать. Но в конце XIX века Георг Кантор[79] набрался смелости и стал искать ответ[80]. Интуиция подсказывает, что нет ничего больше бесконечности.
Оказывается, здесь интуиция нас подводит.
МножестваВ математике все сложное объяснимо через простое. Если быть достаточно скрупулезным, то комплексные числа можно определить с помощью действительных, действительные – с помощью рациональных, рациональные – с помощью целых и т. д. Все здание математики покоится на фундаментальной концепции множества.
Множество – это просто набор объектов. Например, {1, 2, 5} – множество, состоящее из трех чисел[81]. Оно совпадает с множеством {1, 5, 2}, потому что порядок чисел в данном случае не важен. Кроме того, объект либо входит, либо не входит во множество. Входить во множество два раза нельзя. Множество {1, 1, 2, 5} совпадает с множеством {1, 2, 5}, второе появление числа 1 избыточно.
Если элемент входит в некоторое множество, математики используют значок ∈. Например, выражение 2∈ {1, 2, 5} следует понимать так: «Число 2 входит во множество, состоящие из чисел 1, 2, 5». Перечеркнутый значок показывает, что элемент не входит во множество; например: 3∉ {1, 2, 5}.
Число элементов, входящих во множество A, мы обозначаем |A|. Например, |{1, 2, 5}| = 3. Число |A| называют мощностью