электрической активности, свидетельствующей о сильном возбуждении локальных нейронных цепочек

Эти результаты позволили по-новому взглянуть на старую гипотезу, касающуюся значения колебаний в 40 герц для сознательного восприятия. Еще в 1990-е годы нобелевский лауреат Фрэнсис Крик вместе с Кристофом Кошем высказал предположение о том, что сознанию должны сопутствовать колебания в мозгу, имеющие частоту примерно в 40 герц (25 колебаний в секунду) и свидетельствующие об обмене информацией, который идет между корой головного мозга и зрительным бугром. Сегодня мы знаем, что эта гипотеза абсолютно верна — даже бессознательный стимул может инициировать высокочастотную активность, причем не только на частоте в 40 герц, но и во всем спектре гамма-ритма38. Впрочем, пусть вас не удивляет, что высокочастотные колебания возникают как при сознательной, так и при бессознательной обработке информации: эти колебания можно наблюдать практически в любой группе активных нейронов коры мозга всякий раз, когда возбуждение нейронов под воздействием внешних факторов организуется в высокочастотные ритмические колебания39. При этом наши эксперименты показали, что подобная активность получает сильнейшую поддержку в период массовой активации сознания. Следовательно, можно сделать вывод о том, что автографом сознательного восприятия является не просто наличие гамма-ритма, а его усиление на позднем этапе.

Мозговая сеть

Зачем же мозг генерирует синхронные нейронные колебания? Возможно, синхронность способствует передаче информации40. В нейронных дебрях, что раскинулись в коре головного мозга, разносятся хаотичные сигналы миллионов клеток, и потерять небольшую группу активных нейронов в этой путанице совершенно немудрено. Но если нейроны этой группы зазвучат в унисон, они будут услышаны и передаваемая ими информация полетит дальше. Возможно, именно поэтому возбуждающим нейронам приходится подавать свои импульсы в строгой последовательности — так важное сообщение может быть передано дальше. По сути, синхронность создает канал для коммуникации между удаленными друг от друга нейронами41. Нейроны, совершающие колебания одновременно, получают общее окно возможностей и могут получать сигналы друг от друга. Синхронность, которую мы наблюдали в наших макроскопических записях, может указывать на происходящий на микроскопическом уровне обмен информацией между нейронами. Что касается сознательного опыта, то тут особую важность могут иметь обстоятельства, в которых обмен происходит не только между двумя соседствующими областями, но и между самыми разными областями коры головного мозга. Так нейроны всего мозга начинают действовать согласованно, в единении.

Эта идея получила подтверждение, когда несколько групп ученых обнаружили, что четвертым автографом сознательного восприятия является массовая синхронизация электромагнитных сигналов в коре головного мозга42. Этот автограф, как и предыдущий из перечисленных, возникает спустя некоторое время. Примерно 300 миллисекунд спустя после появления изображения начинается синхронизация удаленных электродов — но только если изображение было воспринято сознательно (рис. 21). Синхронность, спровоцированная бессознательно воспринятым изображением, длится недолго и наблюдается только в задней части мозга, то есть там, где происходит не требующая сознания деятельность. Сознательное же восприятие порождает связь между самыми отдаленными участками мозга и провоцирует активный взаимный обмен сигналами, именуемый мозговой сетью43. Частота, на которой возникает эта сеть, в разных исследованиях была разной, однако, как правило, для возникновения сети требуется самая малая частота бета-ритма (13—30 герц) или тета-ритма (3—8 герц). Можно предположить, что низкие несущие частоты наиболее удобны для преодоления серьезных задержек, связанных с передачей информации на расстояние в несколько сантиметров.

Рисунок 21. Синхронизация ряда удаленных друг от друга областей мозга, объединяющихся таким образом в глобальную «мозговую сеть», является четвертым автографом сознания. Примерно через треть секунды после того, как человек увидит лицо (сверху), происходит синхронизация электрических сигналов мозга. (Каждая прямая соответствует высокосинхронизированной паре электродов.) Высокочастотные колебания гамма-ритма (более 30 герц) происходят синхронно, а следовательно, соответствующие области обмениваются сообщениями на высокой скорости, используя для этого сеть связей. Точно так же во время сознательного восприятия слова (внизу) причинно-следственная связь свидетельствует о массивном обоюдонаправленном росте активности в удаленных друг от друга областях коры, особенно во фронтальной ее части. Если же участник эксперимента не видит лицо или слово, возникающая синхронизация невелика и ограничена локальной областью

Пока что нам неизвестно точно, сколько миллионов сигналов нейронов, распределенных во времени и пространстве, нужно, чтобы создать сознательную репрезентацию. Данные все чаще указывают на то, что простого частотного анализа тут недостаточно, хотя, конечно, во многих случаях этот математический инструмент бывает полезен. Но возникающие в мозгу колебания, как правило, не имеют одной строго заданной частоты. Активность нейронов складывается в ритмы, которые могут изменяться так и сяк, идти с разной частотой и при этом синхронизироваться с ритмами самых удаленных уголков мозга. Более того, одна частота может быть «скрыта» в другой: высокочастотный ритм может включаться в определенный момент низкочастотных флюктуаций44. Для того чтобы разобраться в этих сложных закономерностях, нам потребуются какие-то новые математические инструменты.

Так, мы с моими коллегами использовали для записи мозговой активности методику под названием «анализ причинности по Грейнджеру». Она была создана в 1969 году британским экономистом Клайвом Грейнджером для того, чтобы определять, когда два временных ряда — например, два экономических показателя — будут взаимосвязаны таким образом, чтобы один можно было объявить причиной другого. Недавно эта методика нашла свое применение и в нейробиологии. В мозгу настолько все тесно взаимосвязано, что причинно-следственные связи представляют важный, но сложный вопрос. Вот, например, правда ли, что возбуждение идет снизу вверх, от сенсорных рецепторов к интегративным корковым центрам более высокого уровня? Или же часть этого процесса идет также и сверху вниз, и из высокоуровневых областей поступают вниз сигналы, воздействующие на наше сознательное восприятие? Физиологические каналы для передачи информации снизу вверх и сверху вниз в коре головного мозга есть. Каналы связи между отдаленными участками мозга допускают передачу информации в любую сторону, причем каналы для связи сверху вниз значительно преобладают. Но мы пока почти ничего не знаем о том, зачем это нужно и связано ли это как-то с сознанием.

Анализ причинности по Грейнджеру позволил нам пролить немного света на этот вопрос. Возьмем два ограниченных по времени сигнала и спросим: действительно ли один сигнал идет раньше другого и определяет его показатели в будущем? По Грейнджеру, сигнал А является «причиной» сигнала В в том случае, если прошлые состояния А позволяют определить нынешнее состояние сигнала В лучше, чем прошлые состояния сигнала В сами по себе. Следует заметить, что эта формулировка отнюдь не исключает наличия обоюдной причинно-следственной связи: А может влиять на В, и одновременно В может влиять на А.

Когда мы с коллегами использовали эту методику для обработки информации с вживленных в мозг датчиков, обнаружилось, что анализ причинности по Грейнджеру прекрасно объясняет динамику возбуждения сознания45. В частности, во время показов видимых изображений мы наблюдали массовый

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату