схожесть между объектами в виде формул, например «Люди с одинаковыми вкусами покупают одинаковые книги». В таком случае чем больше одинаковых книг купили Элис и Боб, тем больше вероятность, что у них одинаковые вкусы, и (применяя ту же самую формулу в противоположном направлении) тем больше вероятность, что Элис купит книгу, если ее купил Боб. Сходство между ними представлено вероятностью совпадения вкусов. Чтобы извлечь из этого настоящую пользу, можно ввести разный вес для частных случаев одного правила: если Элис с Бобом купили одну и ту же редкую книгу, это, вероятно, дает больше информации, чем если бы они купили бестселлер, поэтому вес события будет выше. В данном случае свойства, сходства которых мы вычисляем, дискретны (купил / не купил), но можно представить сходство и между непрерывными характеристиками, например расстоянием между двумя городами, если ввести в логическую сеть Маркова такое сходство в виде свойства. Если функция оценки — не апостериорная вероятность, а похожая на зазор функция присвоения очков, получится обобщение метода опорных векторов, верховного алгоритма аналогизаторов. Более серьезным вызовом для нашего варианта верховного обучающего алгоритма будет воспроизведение отображения структур — мощной разновидности аналогии, способной переносить выводы из одной области (например, Солнечной системы) в другую. Этого можно достичь путем выведения формул, которые не обращаются к конкретным отношениям в исходной области. Например, утверждение «Друзья курильщиков тоже курят» относится к дружбе и курению, а «Связанные объекты имеют схожие свойства» — к любому отношению и свойству. Такие формулы можно получить путем обобщения частных случаев: «Друзья друзей тоже курят», «Коллеги экспертов тоже эксперты» и других таких паттернов в социальной сети, а затем применить полученные формулы, скажем, к сети с частными случаями вроде «Интересные страницы имеют ссылки на интересные страницы» или к молекулярной биологи, где случаями будут «Белки, которые взаимодействуют с регулирующими гены белками, тоже регулируют гены». Ученые в моем и не только моем коллективе сделали все это и многое другое.

Благодаря Alchemy возможны пять типов обучения без учителя, которые мы видели в предыдущей главе. Очевидно, что он способен на реляционное обучение, и пока в большинстве случаев его применяли именно так. Alchemy использует логику для представления отношений между объектами, а сети Маркова — чтобы они могли быть неопределенными. Его можно превратить в обучающийся алгоритм с подкреплением, обернув вокруг него отложенные награды и применяя его для получения значений каждого состояния таким же образом, как в традиционных обучающихся алгоритмах с подкреплением, например нейронных сетях. Мы можем выполнять с помощью Alchemy образование фрагментов, если введем новую операцию, которая будет сжимать цепочки правил в отдельные правила. (Например, «Если A, то B» и «Если B, то C» в «Если A, то С».) Логическая сеть Маркова с одной ненаблюдаемой переменной, соединенной со всеми наблюдаемыми, выполняет кластеризацию. (Ненаблюдаемая переменная — это переменная, значение которой мы никогда не видим в данных. Можно сказать, что она «скрыта» и ее можно только вывести.)

Если в логической сети Маркова более одной ненаблюдаемой переменной, она выполняет своего рода дискретное понижение размерности, делая выводы о значении этих (менее многочисленных) переменных на основе (более многочисленных) наблюдаемых. Alchemy может справиться и с логической сетью Маркова с непрерывными ненаблюдаемыми переменными, которые нужны, например, для анализа главных компонентов и Isomap. Таким образом, Alchemy в принципе может делать все, что мы хотим от Робби, или по меньшей мере все, что мы обсуждали в этой книге. В действительности мы использовали Alchemy, чтобы научить робота картировать среду, определяя по данным из сенсоров, где находятся стены и двери, их углы и расстояния и так далее, а это первый шаг к созданию квалифицированного домашнего робота.

Наконец, Alchemy можно превратить в метаалгоритм наподобие стэкинга, если закодировать индивидуальные классификаторы, как логическая сеть Маркова, и добавить или вывести обучающие формулы, чтобы их соединить. Именно это сделали в DARPA. Проект PAL (Personalized Assistant that Learns) был для них крупнейшим в области искусственного интеллекта и стал предшественником Siri. Целью PAL было создание автоматического секретаря. Марковская логика использовалась в нем как всеобъемлющее представление, соединяя выходы из разных модулей в решения, что делать. Кроме того, это позволяло модулям PAL учиться друг у друга путем эволюции в сторону консенсуса.

На сегодняшний день одним из самых успешных применений Alchemy было создание семантической сети (или графа знаний, как это называют в Google) на основе интернета. Семантическая сеть — набор понятий (например, «планеты» и «звезды») и отношений между этими понятиями (планеты вращаются вокруг звезд). Alchemy вывел из полученных из сети фактов более миллиона таких паттернов (например, то, что Земля вращается вокруг Солнца) и совершенно самостоятельно открыл такие понятия, как «планета». Мы использовали более совершенную версию, чем базовый алгоритм, которую я описываю в этой книге, но важнейшие идеи те же. Различные исследовательские группы применяли Alchemy в своей работе для решения проблем обработки естественных языков, компьютерного зрения, распознавания активности, анализа социальных сетей, а также в молекулярной биологии и многих других областях.

Несмотря на все успехи, у Alchemy есть ряд существенных недостатков. Пока не получается увеличить масштаб алгоритма, чтобы обрабатывать по-настоящему большие данные, и человеку без ученой степени в области машинного обучения пользоваться им будет сложно. Из-за этих проблем его звездный час пока не настал. Поэтому давайте посмотрим, как их устранить. 

Машинное обучение в планетарном масштабе

В информатике проблема не решена по-настоящему до тех пор, пока она не решена эффективно. От знания, как что-то сделать, пользы мало, если это невозможно сделать в доступное время и с доступной памятью, а когда вы имеете дело с логическою сетью Маркова, эти ресурсы очень быстро заканчиваются. Мы рутинно учим логическую сеть миллионам переменных и миллиардам свойств, но это не так много, как может показаться, потому что число переменных очень быстро растет вместе с числом объектов в логической сети Маркова: если у вас есть социальная сеть с тысячей членов, это дает миллион возможных пар друзей и миллиард частных случаев формулы «друзья друзей — тоже друзья».

Логический вывод в Alchemy — сочетание логического и вероятностного выводов. Первый реализован путем доказательства теорем, а второй — путем распространения степени уверенности, MCMC и другими методами, которые мы рассматривали в главе 6. Мы соединили и то и другое в вероятностное доказательство теорем, и ключевым элементом системы Alchemy в настоящее время стал единый алгоритм вывода, способный вычислить вероятность любой логической формулы. Однако он может быть очень затратным с точки зрения вычислений. Если бы ваш мозг пользовался вероятностным доказательством теорем, тигр съел бы вас, прежде чем вы сообразили бы, что надо бежать. Это высокая цена за обобщенность марковской логики. Поскольку мозг человека эволюционировал в реальном мире, в нем должны быть закодированы дополнительные допущения, благодаря которым он делает выводы очень эффективно. В последние несколько лет мы начали понимать, какими могут быть эти допущения, и встроили их в Alchemy.

Мир — это не случайное скопление взаимодействий. В нем есть иерархическая структура: галактики, планеты, континенты, государства, города, микрорайоны, ваш дом, вы сами, ваши голова, нос, клетка на кончике носа, органеллы в ней, молекулы, атомы, субатомные частицы. В таком случае для моделирования мира нужна марковская логическая сеть, у которой также будет иерархическая структура. Это один из примеров допущения, что обучающийся алгоритм и среда схожи. Логическая сеть Маркова не должна знать априори, из каких элементов состоит мир. Все, что надо Alchemy, — допустить, что в мире есть элементы, и поискать их, как только что сделанная книжная полка «подразумевает» существование книг, но пока не знает, какие именно будут на ней стоять. Благодаря иерархической структуре выводы становятся возможными, потому что подэлементы мира взаимодействуют главным образом

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×