Dependent Behaviours,” J Nsci 25 (2005): 7792; A. Izquierdo et al., “Brief Uncontrollable Stress Causes Dendritic Retraction in Infralimbic Cortex and Resistance to Fear Extinction in Mice,” J Nsci 26 (2006): 5733; C. Liston et al., “Stress-Induced Alterations in Prefrontal Cortical Dendritic Morphology Predict Selective Impairments in Perceptual Attentional Set Shifting,” J Nsci 26 (2006): 7870; J. Radley, “Repeated Stress Induces Dendritic Spine Loss in the Rat Medial Prefrontal Cortex,” Cerebral Cortex 16 (2006): 313; A. Arnsten, “Stress Signaling Pathways That Impair Prefrontal Cortex Structure and Function,” Nat Rev Nsci 10 (2009): 410; C. Sandi and M. Loscertales, “Opposite Effects on NCAM Expression in the Rat Frontal Cortex Induced by Acute vs. Chronic Corticosterone Treatments,” Brain Res 828 (1999): 127; C. Wellman, “Dendritic Reorganization in Pyramidal Neurons in Medial Prefrontal Cortex After Chronic Corticosterone Administration,” J Neurobiol 49 (2001): 245; D. Knox et al., “Single Prolonged Stress Decreases Glutamate, Glutamine, and Creatine Concentrations in the Rat Medial Prefrontal Cortex,” Nsci Lett 480 (2010): 16.

264

E. Dias-Ferreira et al., “Chronic Stress Causes Frontostriatal Reorganization and Affects Decision-Making,” Sci 325 (2009): 621; M. Fuchikiami et al., “Epigenetic Regulation of BDNF Gene in Response to Stress,” Psychiatry Investigation 7 (2010): 251.

265

R. Mitra and R. Sapolsky, “Acute Corticosterone Treatment Is Sufficient to Induce Anxiety and Amygdaloid Dendritic Hypertrophy,” PNAS 105 (2008): 5573; A. Vyas et al., “Chronic Stress Induces Contrasting Patterns of Dendritic Remodeling in Hippocampal and Amygdaloid Neurons,” J Nsci 22 (2002): 6810; S. Bennur et al., “Stress-Induced Spine Loss in the Medial Amygdala Is Mediated by Tissue-Plasminogen Activator,” Nsci 144 (2006): 8; A. Govindarajan et al., “Transgenic Brain-Derived Neurotrophic Factor Expression Causes Both Anxiogenic and Antidepressant Effects,” PNAS 103 (2006): 13208. Расширение ЯЛКП: A. Vyas et al., “Effects of Chronic Stress on Dendritic Arborization in the Central and Extended Amygdala,” Brain Res 965 (2003): 290; J. Pego et al., “Dissociation of the Morphological Correlates of Stress-Induced Anxiety and Fear,” Eur J Nsci 27 (2008): 1503.

266

A. Magarinos and B. McEwen, “Stress-Induced Atrophy of Apical Dendrites of Hippocampal CA3c Neurons: Involvement of Glucocorticoid Secretion and Excitatory Amino Acid Receptors,” Nsci 69 (1995): 89; A. Magarinos et al., “Chronic Psychosocial Stress Causes Apical Dendritic Atrophy of Hippocampal CA3 Pyramidal Neurons in Subordinate Tree Shrews,” J Nsci 16 (1996): 3534; B. Eadie et al., “Voluntary Exercise Alters the Cytoarchitecture of the Adult Dentate Gyrus by Increasing Cellular Proliferation, Dendritic Complexity, and Spine Density,” J Comp Neurol 486 (2005): 39.

267

M. Khan et al., “Estrogen Regulation of Spine Density and Excitatory Synapses in Rat Prefrontal and Somatosensory Cerebral Cortex,” Steroids 78 (2013): 614; B. McEwen, “Estrogen Actions Throughout the Brain,” Recent Prog Hormone Res 57 (2002): 357; B. Leuner and E. Gould, “Structural Plasticity and Hippocampal Function,” Ann Rev Psych 61 (2010): 111.

268

R. Hamilton et al., “Alexia for Braille Following Bilateral Occipital Stroke in an Early Blind Woman,” Neuroreport 11 (2000): 237; E. Striem-Amit et al., “Reading with Sounds: Sensory Substitution Selectively Activates the Visual Word Form Area in the Blind,” Neuron 76 (2012): 640.

269

S. Florence et al., “Large-Scale Sprouting of Cortical Connections After Peripheral Injury in Adult Macaque Monkeys,” Sci 282 (1998): 1117; C. Darian-Smith and C. Gilbert, “Axonal Sprouting Accompanies Functional Reorganization in Adult Cat Striate Cortex,” Nat 368 (1994): 737; M. Kossut and S. Juliano, “Anatomical Correlates of Representational Map Reorganization Induced by Partial Vibrissectomy in the Barrel Cortex of Adult Mice,” Nsci 92 (1999): 807; L. Merabet and A. Pascual-Leone, “Neural Reorganization Following Sensory Loss: The Opportunity of Change,” Nat Rev Nsci 11 (2010): 44; A. Pascual-Leone et al., “The Plastic Human Brain Cortex,” Ann Rev Nsci 28 (2005): 377; B. Becker et al., “Fear Processing and Social Networking in the Absence of a Functional Amygdala,” BP 72 (2012): 70; L. Colgin, “Understanding Memory Through Hippocampal Remapping,” TINS 31 (2008): 469; V. Ramirez-Amaya et al., “Spatial Longterm Memory Is Related to Mossy Fiber Synaptogenesis,” J Nsci 21 (2001): 7340; M. Holahan et al., “Spatial Learning Induces Presynaptic Structural Remodeling in the Hippocampal Mossy Fiber System of Two Rat Strains,” Hippocampus 16 (2006): 560; I. Galimberti et al., “Long-Term Rearrangements of Hippocampal Mossy Fiber Terminal Connectivity in the Adult Regulated by Experience,” Neuron 50 (2006): 749; V. De Paola et al., “Cell Type – Specific Structural plasticity of Axonal Branches and Boutons in the Adult Neocortex,” Neuron 49 (2006): 861; H. Nishiyama et al., “Axonal Motility and Its Modulation by Activity Are Branch-Type Specific in the Intact Adult Cerebellum,” Neuron 56 (2007): 472.

270

C. Pantev and S. Herholz, “Plasticity of the Human Auditory Cortex Related to Musical Training,” Nsci Biobehav Rev 35 (2011): 2140.

271

A. Pascual-Leone, “Reorganization of Cortical Motor Outputs in the Acquisition of New Motor Skills,” in Recent Advances in Clin Neurophysiology, ed. J. Kinura and H. Shibasaki (Amsterdam: Elsevier Science, 1996), pp. 304–8.

272

C. Xerri et al., “Alterations of the Cortical Representation of the Rat Ventrum Induced by Nursing Behavior,” J Nsci 14 (1994): 171; B. Draganski et al., “Neuroplasticity: Changes in Grey Matter Induced by Training,” Nat 427 (2004): 311.

273

J. Altman and G. Das, “Autoradiographic and Histological Evidence of Postnatal Hippocampal Neurogenesis in Rats,” J Comp Neurol 124 (1965): 319.

274

M. Kaplan, “Environmental Complexity Stimulates Visual Cortex Neurogenesis: Death of a Dogma and a Research Career,” TINS 24 (2001): 617.

275

S. Goldman and F. Nottebohm, “Neuronal Production, Migration, and Differentiation in a Vocal Control Nucleus of the Adult Female Canary Brain,” PNAS 80 (1983): 2390; J. Paton and F. Nottebohm, “Neurons Generated in the Adult Brain Are Recruited into Functional Circuits,” Sci

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату