О том, что такое темная энергия и какова ее сущность, до сих пор ведутся жаркие споры. Но в одном ученые согласны: темной энергии во Вселенной очень много, она составляет не меньше 70 % общего количества.
На сегодняшний день имеется две основных гипотезы относительно свойств этой энергии. Одни ученые считают ее неизменной величиной, космологической постоянной, равномерно заполняющей пространство Вселенной. Другие думают, что темная энергия — это динамическое поле, плотность и энергетическая составляющая которого может подвергаться изменениям во времени и пространстве.
В мире нет ничего постоянного, кроме непостоянства.
— Джонатан Свифт№ 71
Парадокс близнецов и четвертое измерение. Теория относительности
По легенде, первое озарение, касающееся теории относительности, пришло к Альберту Эйнштейну на улице. Он посмотрел на идущий трамвай и понял: если бы человек, находящийся в трамвае, уронил какой-то предмет, он бы увидел, что тот падает вертикально. Хотя на самом деле, с учетом движения трамвая, предмет падал бы по параболе. Законы природы, отвечающие за падение этого предмета, остались бы неизменными для обоих наблюдателей — того, кто находится в трамвае, и того, кто смотрит снаружи, но восприятие этих законов было бы разным. В этом и заключается принцип относительности.
Из этого принципа Эйнштейн вывел две теории: частную и общую теории относительности. Самый известный эффект, следующий из частной теории относительности, — замедление времени. В системе координат, где объекты движутся со скоростями, близкими к скорости света, время растягивается. Обычно это иллюстрируется так называемым парадоксом близнецов. Если один из двух близнецов улетит в космос на ракете, движущейся со скоростью света, и вернется через десять лет, то окажется, что он на десять лет младше брата. Ведь в его системе часы замедлились и прошло всего несколько часов.
Общая теория относительности математически более сложна, чем частная. На ее разработку Эйнштейну понадобилось 11 лет. Эта теория превращает наш трехмерный мир (который можно измерить в длину, ширину и высоту) в четырехмерный, где четвертым измерением является время. Причем все измерения неразрывно связаны: нет отдельного пространства и отдельного времени, есть пространственно-временной континуум. А гравитация является следствием искривления ткани пространства-времени под воздействием массы.
Не существует абсолютного верха и низа, как учил Аристотель, и абсолютного положения в пространстве: тела располагаются относительно друг друга.
— Джордано Бруно№ 72
Звезды разбегаются, как тараканы. Закон Хаббла
Открытия американского астронома Эдвина Хаббла, сделанные в 20-х годах XX века, перевернули представления астрономов о Вселенной и позволили понять, насколько она огромна и сложна.
До этого считалось, что Вселенная ограничивается нашей галактикой, а туманности, которые не удавалось подробно разглядеть в телескоп, — это облака газа и пыли. Хаббл, рассматривая в телескоп туманность Андромеды, обнаружил, что на окраинах туманности находятся скопления звезд. Вычислив их светимость, астроном рассчитал расстояние до туманности. У него получилось 900 тысяч световых лет (по современным данным 2,3 миллиона). Хотя он ошибся в вычислениях, все равно стало понятно, что туманность Андромеды не может находиться внутри Млечного Пути. Он стал изучать другие туманности и увидел, что они тоже состоят из звезд, а значит, являются галактиками, схожими с нашей. Это полностью изменило представление о Вселенной, ее границы отодвинулись на много миллионов световых лет от нас.
Это было грандиозное открытие, но Хаббл не остановился. Обнаружив, что излучение далеких звезд находится в красном спектре, он предположил, что это проявление эффекта Доплера, то есть звезды в далеких галактиках удаляются от нас. Сделав расчеты, астроном вывел такую закономерность: чем дальше от нас находится галактика, тем быстрее она удаляется. Эту закономерность назвали законом Хаббла.
Следствием этого закона стала теория о расширении Вселенной. А раз Вселенная расширяется, значит, когда-то она была гораздо меньше, а еще раньше — зародилась из сверхплотного вещества. Так, благодаря открытиям Хаббла, возникла теория Большого взрыва.
Великая поэзия нашего века — это наука с удивительным расцветом своих открытий, своим завоеванием материи, окрыляющая человека, чтоб удесятерить его деятельность.
— Эмиль Золя№ 73
Через 300 тысяч лет после взрыва. Реликтовое излучение
После Большого взрыва Вселенную окутывала горячая плотная смесь, практически туман, из фотонов и заряженных частиц. В юном возрасте 300 тысяч лет Вселенная остыла до такого состояния, что заряженные частицы образовали первые атомы. Но некоторые фотоны так и остались свободными, они и создают тот микроволновой фон, который сегодня регистрируется в космосе и который астрономы называют реликтовым излучением. По сути, это фотография Вселенной в возрасте 300 тысяч лет.
Ученые обнаружили реликтовое излучение в 1960-х годах, и тогда казалось, что оно однородно. Это не вписывалось в теорию Большого взрыва, ведь для того, чтобы образовались сгустки материи, впоследствии ставшие галактиками, нужны участки с более низкой и более высокой температурой. К счастью для теории, современные исследования показали, что температура излучения неравномерна.
№ 74
Все из ничего. Теория Большого взрыва
Момент появления нашей Вселенной ученые называют Большим взрывом, хотя на самом деле это был не совсем взрыв. Взрыв или, например, фейерверк случается в пространстве. А до Большого взрыва никакого пространства не существовало вовсе, так же как времени и материи. Не было ничего.
Вселенная представляла собой бесконечно малую точку (ее размер равнялся нулю) бесконечной плотности и температуры. И вот в определенный момент она начала стремительно расширяться, за долю секунды на свет появилась вся материя и вся энергия. Это невероятно быстрое расширение пространства и называют Большим взрывом. Впоследствии из микроскопических частиц вещества образовалось все, что сейчас есть в космосе: звезды и планеты, галактики и туманности, кометы и газовые облака. Этот процесс занял более 13 миллиардов лет.
Почему ученые уверены в том, что Большой взрыв действительно имел место? Главное доказательство — Вселенная расширяется. Это значит, что когда-то она была меньше, а очень-очень давно она была настолько маленькой, что представляла собой микроскопическую точку. Еще одно доказательство — это присутствие в космическом пространстве реликтового излучения, оставшегося с момента Большого взрыва. И, наконец, последнее из важнейших доказательств — во Вселенной очень много гелия, который образуется в результате ядерных реакций. Физики подсчитали: его как раз столько, сколько должно было остаться после Большого взрыва.
Несмотря на то, что аргументов в пользу