Анализируя результаты исследований, подойдите к вопросу с другой стороны. Публикуемая статистика всегда должна приводиться с возможной погрешностью вычислений. В качественных таблицах и диаграммах отражается погрешность вычислений на коэффициент достоверности (90 % или 95 % – наиболее характерные показатели). Погрешность плюс-минус 2 % на коэффициент достоверности 90 % означает, что, если провести измерения 100 раз, 90 раз полученный результат не будет отклоняться от опубликованного показателя больше чем на 2 % в любую сторону.
Это чрезвычайно важная информация, если вы опираетесь на опубликованную статистику при принятии решений. Если статистические данные вам предоставляет какая-то компания, попросите ее отмечать эти интервалы в виде планок погрешности.
Столбец справа кажется меньше левого, но при этом планки погрешности пересекаются. Сложно сказать, означает ли это, что статистические данные, которые мы измеряли, разнятся в двух группах, учитывая наш доверительный интервал (если планки погрешности не пересекаются, тогда в этом можно быть уверенными).
Приведу пример. Недавно мне представили исследование оценки уровня обеспокоенности генеральных директоров компаний вопросами безопасности по шкале от 1 до 10. Компания, проводившая исследование, была счастлива, так как предлагаемый ими сервис направлен на решение проблемы безопасности, которая в исследовании названа самой серьезной с индексом 6,9. При этом индексы других проблем варьировались между 6,8 и 6,5. Это заставило меня уточнить у авторов исследования, насколько велики были планки погрешности. Выяснилось, что в ходе исследования опросили лишь небольшое число респондентов, их ответы сильно различались и все, что можно было утверждать с относительной достоверностью, – это что руководители компаний в более или менее равной степени обеспокоены многими проблемами безопасности. Если бы авторы исследования провели его еще раз с другой похожей группой респондентов, порядок приоритетности, скорее всего, был бы уже другим.
Этот отрицательный результат фактически представляет собой весьма полезную информацию: результаты исследования говорят, что руководители компаний не выделяют одну-единственную угрозу безопасности, а значит, они, вероятно, более восприимчивы к новой информации и обучению, чем к попыткам продать им одно средство для решения конкретной проблемы. Однако сделать такой вывод было бы практически невозможно, если слишком высоко оценить правильность результата, потому что данные кажутся точнее, чем на самом деле.
Часть 4
Куда вы направляетесь?
14. Метод опережающей индикации
Нам не дано знать будущее, но можно в любом случае постараться его предугадать.
Можно подумать, что лидерами становятся люди, добивающиеся наибольших успехов; тем не менее статистика говорит, что нередко мы считаем лидерами людей, которые просто уверены в своем мнении, потому что большинство принимают эту уверенность за опыт. Даниэль Канеман[13], которому в 2002 году была присуждена Нобелевская премия за работу о том, как люди принимают (ошибочные) решения, предупреждает о том, что «эксперты не знают точно, где граница их профессионального опыта… Лидерство в нашем понимании ассоциируется с решительностью. Подобное представление о роли лидера вынуждает людей принимать решения довольно быстро… Мы очень хотим следовать за теми, кто знает, что делает, и кому не нужно долго над этим раздумывать».
Мы отдаем предпочтение авантюристам, которым повезло. По словам Канемана, «некоторые завоевывают репутацию успешных людей, хотя фактически все, что они сделали, – это рискнули в ситуации, в которой ни один здравомыслящий человек не пошел бы на риск». Или, как сформулировал это бизнес-гуру Томас Питерс[14]: «У хороших руководителей всегда перекос в сторону действий».
Проблема ли это? Да, поскольку у перекоса в сторону действий есть обратная сторона: недостаточное внимание к анализу информации. Мы склонны доверять руководителю, уверенному в своих действиях, менее склонны задавать вопросы и поэтому меньше полагаемся на собственные наблюдения или полученные данные, когда прогнозируем будущее.
Конечно, с будущим свои сложности. Оно еще не наступило, а значит, мы всегда обречены лишь выдвигать догадки. Прогнозирование становится важной частью бизнес-процесса, поскольку инвестиции, необходимые для того, чтобы изменение внешних условий привело к развитию бизнеса, бывают более эффективными, если предвосхищают события, а не следуют за ними. Трекинговые исследования и дэшборды – это все замечательно, но они не скажут вам, что делать дальше.
Недостаток данных в процессе прогнозирования стимулирует перекос в сторону действий со всеми вытекающими минусами, о которых предупреждает Канеман. Как же научиться строить более качественные прогнозы?
Начнем с того, что делать это идеально попросту невозможно. Ошибки будут всегда. Как подметил в 1966 году экономист Пол Самуэльсон[15]: «Фондовый рынок предсказал девять из последних пяти рецессий».
Во-вторых, существует множество способов строить прогнозы.
Анализ трендов, то есть прогнозирование на основе прошлой деятельности, – весьма практичный метод, и им можно воспользоваться. Его недостаток заключается в предположении, что исходные условия остаются такими же. Самым важным для определения будущих действий нередко бывает прогноз, что что-то скоро изменится. Анализ тенденций изменений в этом отношении самый слабый из методов.
В основе предсказательной аналитики (которая опирается на большие данные) лежит использование сложных математических моделей. Этот метод очень эффективен, но требует финансовых вложений (и наличия большого массива данных).
Можно прислушаться к общему мнению экспертов, например отчеты группы финансовых аналитиков о том, следует ли продавать, покупать или держать акции, объединяют знания и опыт специалистов. К недостаткам этого метода можно отнести то, что эксперты располагают одинаковыми данными и у них может проявиться тенденция коллективного мышления.
Прогнозный рынок – штука увлекательная, но редкая. Если бы все сотрудники вашей компании могли сделать ставку на какое-то событие, его срок и потенциальную стоимость, на что именно они бы поставили и сколько? Прогнозный рынок, как букмекерские коэффициенты, объединяет все эти ставки. Например, электоральные прогнозные рынки нередко бывают эффективнее мнения экспертов, потому что те, кто знает мало, делают маленькие ставки. Фьючерсные рынки (и в ограниченной степени фондовый рынок) представляют собой прогнозные рынки.
Тем не менее есть неоспоримое преимущество в том, чтобы иметь группу сильных аналитиков, составляющих прогнозы, а не просто чуть чаще угадывать правильные ответы. Это позволяет определить направление для развития бизнеса. Этот метод активно применяется национальными центральными банками и называется опережающей индикацией. Например, когда Английский банк методом опережающей индикации делает прогноз по уровню процентных ставок (на самом деле это просто заумный термин, чтобы сказать населению, что, по мнению центробанка, будет происходить в экономике и как он собирается на это реагировать), люди могут с большей степенью уверенности делать инвестиции; это, в свою очередь, помогает формированию тех спокойных и стабильных условий, в которых прогноз центробанка имеет больше шансов реализоваться. То же самое применимо и в отношении ведения бизнеса: если руководитель компании в состоянии делать точные прогнозы торговой конъюнктуры и влияния собственной стратегии, это означает, что он в большей степени полагается на эффективность своего долгосрочного планирования. Это дает ему уверенность излагать свои планы сотрудникам компании, что помогает тем, в свою очередь, принимать более эффективные и быстрые тактические решения. В результате этого создаются условия, в которых есть все шансы сбыться долгосрочным прогнозам руководителя. Если этот механизм запущен правильно, он открывает для компании настоящую полосу везения. Главное – тщательная подготовка изначальных прогнозов, которые должны вдохновлять сотрудников.
Правильные прогнозы помогают им сфокусироваться на главном. Например, уверенный прогноз, что определенный рынок или клиент