and the high-level classification of Protozoa // European Journal of Protistology, 2003, V. 39, № 4, 338–348.

353

Stechmann A., Cavalier-Smith T. The root of the eukaryote tree pinpointed // Current Biology, 2003, V. 13, № 17, R665 — R666.

354

Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations // Journal of Eukaryotic Microbiology, 2009, V. 56, № 1, 26–33.

355

Roger A. J., Simpson A. G. B. Evolution: revisiting the root of the eukaryote tree // Current Biology, 2009, V. 19, № 4, R165 — R167.

356

Burki et al., 2007.

357

Baldauf, 2008.

358

Hampl V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups” // Proceedings of the National Academy of Sciences, 2009, V. 106, № 10, 3859–3864.

359

He D. et al. An alternative root for the eukaryote tree of life // Current Biology, 2014, V. 24, № 4, 465–470.

360

Adl et al., 2012.

361

Cavalier-Smith T. Deep phylogeny, ancestral groups and the four ages of life // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2010, V. 365, № 1537, 111–132.

362

Cavalier-Smith T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa // European Journal of Protistology, 2013, V. 49, № 2, 115–178.

363

Cavalier-Smith T. Symbiogenesis: mechanisms, evolutionary consequences, and systematic implications // Annual Review of Ecology, Evolution, and Systematics, 2013a, V. 44, 145–172.

364

Cavalier-Smith T. et al. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa // Molecular Phylogenetics and Evolution, 2014, V. 81, 71–85.

365

Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences — the choanoflagellate / sponge transition, neurogenesis and the Cambrian explosion // Philosophical Transactions of the Royal Society, B: Biological Sciences, 2017, V. 372, 1713.

366

Cavalier-Smith, 2009.

367

Cavalier-Smith T. The origins of plastids // Biological Journal of the Linnean Society, 1982, V. 17, № 3, 289–306.

368

Cavalier-Smith, 2013a.

369

Keeling P. J. Diversity and evolutionary history of plastids and their hosts // American Journal of Botany, 2004, V. 91, № 10, 1481–1493.

370

Burki F. The eukaryotic tree of life from a global phylogenomic perspective // Cold Spring Harbor. Perspectives in Biology, 2014, V. 6, № 5, a016147.

371

Adl et al., 2012.

372

Burki F., Shalchian-Tabrizi K., Pawlowski J. Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes // Biology Letters, 2008, V. 4, № 4, 366–369.

373

Hampl et al., 2009.

374

Adl et al., 2012.

375

Germot A., Philippe H. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family // Journal of Eukaryotic Microbiology, 1999, V. 46, № 2, 116–124.

376

 Germot, Philippe, 1999.

377

Philippe H., Germot A., Moreira D. The new phylogeny of eukaryotes // Current Opinion in Genetics & Development, 2000, V. 10, № 6, 596–601.

378

Philippe H. Early — branching or fast — evolving eukaryotes? An answer based on slowly evolving positions // Proceedings of the Royal Society of London, B: Biological Sciences, 2000, V. 267, № 1449, 1213–1221.

379

Philippe, 2000.

380

Philippe et al., 2000. «Примитивность» — двусмысленный термин. В данном случае Эрве Филипп называет примитивностью раннее отхождение группы от общего ствола (а не простоту организации или сходство с общим предком — такие значения термина «примитивность» тоже существуют, но здесь они неактуальны).

381

Baldauf, 2003.

382

Завадский К. М., Колчинский Э. И. Эволюция эволюции. — Л.: Наука, 1977.

383

Simpson G. G. Periodicity in vertebrate evolution // Journal of Paleontology, 1952, V. 26, № 3, 359–370.

384

Colbert E. H. Explosive evolution // Evolution, 1953, V. 7, № 1, 89–90.

385

Chaline J. Rodents, evolution, and prehistory // Endeavour, 1977, V. 1, № 2, 44–51.

386

Rokas A., Carroll S. B. Bushes in the tree of life // PLoS Biology, 2006, V. 4, № 11, e352.

387

Pawlowski J. The new micro-kingdoms of eukaryotes // BMC Biology, 2013, V. 11, № 1, 40.

388

Walker G., Dacks J. B., Martin Embley T. Ultrastructural description of Breviata anathema, n. gen., n. sp., the organism previously studied as “Mastigamoeba invertens” // Journal of Eukaryotic Microbiology, 2006, V. 53, № 2, 65–78.

389

Heiss A. A., Walker G., Simpson A. G. B. The flagellar apparatus of Breviata anathema, a eukaryote without a clear supergroup affinity // European Journal of Protistology, 2013, V. 49, № 3, 354–372.

390

Minge M. A. et al. Evolutionary position of breviate amoebae and the primary eukaryote divergence // Proceedings of the Royal Society of London, B: Biological Sciences, 2009, V. 276, № 1657, 597–604.

391

Burki, 2014.

392

 Brown M. W. et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads // Proceedings of the Royal Society of London, B: Biological Sciences, 2013, V. 280, № 1769, 20131755.

393

Cavalier-Smith, 2009.

394

Cavalier-Smith T., Chao E. E. Phylogeny and evolution of apusomonadida (protozoa: apusozoa): new genera and species // Protist, 2010, V. 161, № 4, 549–576.

395

Torruella G., Moreira D., Lopez-Garcia P. Phylogenetic and ecological diversity of apusomonads, a lineage of deep-branching eukaryotes // Environmental Microbiology Reports, 2017, V. 9, № 2, 113–119.

396

Brown et al., 2013.

397

Paps J. et al. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts // Protist, 2013, V. 164, № 1, 2–12.

398

Cavalier-Smith et al., 2014.

399

Atkins M. S., McArthur A. G., Teske A. P. Ancyromonadida: a new phylogenetic lineage among the protozoa closely related to the common ancestor of metazoans, fungi, and choanoflagellates (Opisthokonta) // Journal of Molecular Evolution, 2000, V. 51, № 3, 278–285.

400

Carter H. J. XXXII. — On the fresh-and salt-water Rhizopoda of England and India // Journal of Natural History, 1865, V. 15, № 88, 277–293.

401

Brugerolle G. et al. Collodictyon triciliatum and Diphylleia rotans (= Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату