Кроме того, появление лигнина сильно повлияло на глобальный, то есть общепланетный, круговорот углерода. Дело в том, что лигнин с его разнообразными мономерами и перепутанными химическими связями исключительно неподатлив к действию ферментов. Поэтому растительной тканью, в которой много лигнина, почти невозможно питаться. Из всех земных живых организмов эффективно разлагать лигнин “научились” только грибы, причем не все и не сразу[48]. Именно они и стали главными разрушителями стволов мертвых деревьев. До этого вся огромная биомасса лигнифицированной древесины просто захоранивалась как есть, создавая залежи каменного угля. В честь этих залежей получил название целый геологический период — каменноугольный, или карбон.
Карбоновые леса непрерывно вели фотосинтез и выделяли в атмосферу огромное, немыслимое ни в какие более ранние эпохи количество кислорода. Мы знаем, что свободный кислород (O2) нужен для дыхания, то есть для полного окисления питательных веществ. Таким питательным веществом могла бы служить и древесина погибших деревьев. Но в карбоновом периоде эффективные деструкторы еще не возникли, поэтому перерабатывать древесину было некому. Стволы деревьев просто захоранивались, и заключенный в них углерод уходил из экологического круговорота вовсе. А живые деревья тем временем продолжали выделять кислород, который накапливался в атмосфере. В результате атмосферная концентрация кислорода достигла уникальной в истории Земли цифры 35%[49]. Как известно, современная атмосфера Земли содержит “всего” 21% кислорода. На самом деле по космическим меркам и это невероятно много, но в карбоне было в полтора раза больше. А дело тут именно в том, что огромная биомасса стволов деревьев в карбоне не съедалась никакими живыми существами. В отличие от современной ситуации, когда упавшие стволы измельчаются насекомыми, перерабатываются грибами и в итоге их углеродные соединения окисляются дыханием до углекислоты (CO2). При этом расходуется кислород, а углекислота выдыхается и уходит в атмосферу.
До той биомассы, которая успела захорониться в виде каменного угля раньше, чем возникли эффективные деструкторы, живая природа смогла добраться только с появлением человека, который неутомимо откапывает каменный уголь и жжет его, используя в качестве топлива. Будем иметь в виду, что процессы дыхания и горения описываются строго одним и тем же суммарным уравнением:
C6H12O6 (глюкоза) + 6O2 → 6CO2 + 6H2O
Одна молекула глюкозы взаимодействует с шестью молекулами кислорода, давая в итоге шесть молекул углекислого газа и шесть молекул воды. С точки зрения интересов жизни на Земле главное тут — высвобождение углерода в виде углекислого газа. А уж фотосинтезирующие организмы (то есть растения) могут, захватив этот углекислый газ, синтезировать из него гораздо более сложные углеродные соединения, пригодные для построения тел живых существ. В этом плане влияние человека на общепланетный круговорот углерода скорее положительно. Огромная масса углерода, которая сотни миллионов лет была “заперта” в пластах каменного угля, благодаря нашим шахтам, паровозам и тепловым электростанциям вновь пошла в дело.
Мы уже мимоходом упомянули, что бывают и другие, нецеллюлозные типы клеточных стенок. Еще один чрезвычайно распространенный в природе полисахарид — хитин, входящий в состав клеточных стенок грибов (наряду с полимерами глюкозы, которые там тоже есть). Кроме того, хитина много в наружных покровах некоторых животных, например насекомых, ракообразных и паукообразных. И грибов, и насекомых на Земле очень много. Потому и общая масса хитина на планете получается гигантской. Хитин — полимер, во многом похожий на целлюлозу. Он состоит из остатков бета-глюкозы, но только модифицированных. Дело в том, что хитин — это азотсодержащий полисахарид. Его мономером является, строго говоря, не сама глюкоза, а ацетилглюкозамин — производное глюкозы, где к одному из атомов углерода вместо гидроксила присоединена аминоацетильная группа –NH–CO–CH3.
Наконец, клеточные стенки бактерий состоят из еще более сложных азотсодержащих производных глюкозы, к которым дополнительно ковалентно “пришиты” цепочки аминокислот. Такой многокомпонентный полимер называется пептидогликаном. Самое интересное, что в состав пептидогликанов входят не только L-, но и D-аминокислоты. Это именно тот случай, когда D-аминокислоты в живых организмах все-таки присутствуют. В состав белков они, конечно, не входят и здесь, но в состав других соединений — в конце концов, почему бы и нет.
Мир, окрашенный по Граму
В 1884 году датский микробиолог Ганс Христиан Грам опубликовал новый метод окрашивания бактерий. Основой метода было применение сочетания органических красителей, главный из которых родствен по структуре обычным аминам (см. главу 1). Тут надо сказать, что окрашивание — это важно. Без окрашивания под микроскопом, как правило, толком ничего не рассмотреть. К тому же окрашивание должно быть стойким — чтобы не смывалось спиртами и другими растворителями при изготовлении препаратов, и, по возможности, дифференциальным — чтобы не красило все сплошь, ведь тогда в объекте, опять же, будет не разобраться. В общем, окраска объектов для микроскопии — это целая наука. В XIX веке, когда многое делалось наугад, изобретение нового красителя требовало как отличного знания химии, так и незаурядной интуиции.
Азотсодержащий краситель, предложенный Грамом, прекрасно действовал на бактерий. Но не на всех. Одних он исправно окрашивал в стойкий синий цвет, а на других почему-то вообще не держался — при промывке препарата они обесцвечивались. Так появилось разделение бактерий на грамположительных и грамотрицательных.
Умерший в 1938 году Ганс Христиан Грам, возможно, и сам не успел вполне осознать, насколько важную вещь он открыл. Обнаруженное им разделение бактерий по типу окрашивания оказалось признаком фундаментальнейших различий в строении клетки (см. рис. 6.6). У грамположительных бактерий снаружи от мембраны находится толстая пептидогликановая клеточная стенка. В этом плане их клетка более-менее похожа, скажем, на растительную, не считая того, что материал клеточной стенки другой. У грамотрицательных бактерий дело обстоит совершенно иначе. Их наружная оболочка включает две полноценные билипидные мембраны с тонкой пептидогликановой клеточной стенкой, расположенной между ними. Клеточная стенка грамотрицательных бактерий заключена между наружной и внутренней клеточными мембранами, как начинка сэндвича. Так не устроены никакие другие клетки.
Есть гипотеза, что первые на Земле живые организмы были именно грамотрицательными бактериями, и только у их потомков вторая — наружная — мембрана исчезла[50]. К сожалению, эта красивая идея слабо поддерживается молекулярно-биологическими данными, поэтому сейчас она не слишком популярна. Но независимо от того, верна она или нет, эволюционный зигзаг тут получился очень занятный.
7. нуклеотиды
— Как вообще может анаэроб развиться в сложный многоклеточный организм и тем более — двигаться настолько быстро, как эта тварь?