Sebe-Pedros A., Degnan B. M., Ruiz-Trillo I. The origin of Metazoa: a unicellular perspective // Nature Reviews. Genetics, 2017, V. 18, 498–512.
336
James T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny // Nature, 2006, V. 443, 818–822.
337
Xu H. et al. The α-aminoadipate pathway for lysine biosynthesis in fungi // Cell Biochemistry and Biophysics, 2006, V. 46, № 1, 43–64.
338
Vogel H. J. Distribution of lysine pathways among fungi: evolutionary implications // The American Naturalist, 1964, V. 98, № 903, 435–446.
339
Moroz L. L. On the independent origins of complex brains and neurons // Brain, Behavior and Evolution, 2009, V. 74, № 3, 177–190.
340
Moroz L. L. et al. The ctenophore genome and the evolutionary origins of neural systems // Nature, 2014, V. 510, № 7503, 109–114.
341
Jekely G., Paps J., Nielsen C. The phylogenetic position of ctenophores and the origin (s) of nervous systems // EvoDevo, 2015, V. 6, № 1, 1.
342
Малахов В. В. Симметрия и щупальцевый аппарат книдарий // «Биология моря», 2016, т. 42, № 4, 249–259.
343
Holland P. W. H. Did homeobox gene duplications contribute to the Cambrian explosion? // Zoological Letters, 2015, V. 1, № 1, 1.
344
Adl et al., 2005.
345
Butterfield N. J. Early evolution of the Eukaryota // Palaeontology, 2015, V. 58, № 1, 5–17.
346
Burki F. et al. Phylogenomics reshuffles the eukaryotic supergroups // PloS One, 2007, V. 2, № 8, e790.
347
Hackett J. D. et al. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates // Molecular Biology and Evolution, 2007, V. 24, № 8, 1702–1713.
348
He D. et al. Reducing long-branch effects in multi-protein data uncovers a close relationship between Alveolata and Rhizaria // Molecular Phylogenetics and Evolution, 2016, V. 101, 1–7.
349
Adl et al., 2012.
350
Burki F. et al. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins // Proceedings of the Royal Society of London, B: Biological Sciences, 2012, rspb20112301.
351
Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree // Biology Letters, 2010, V. 6, № 3, 342–345.
352
Cavalier-Smith T. Protist phylogeny and the high-level classification of Protozoa // European Journal of Protistology, 2003, V. 39, № 4, 338–348.
353
Stechmann A., Cavalier-Smith T. The root of the eukaryote tree pinpointed // Current Biology, 2003, V. 13, № 17, R665 — R666.
354
Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations // Journal of Eukaryotic Microbiology, 2009, V. 56, № 1, 26–33.
355
Roger A. J., Simpson A. G. B. Evolution: revisiting the root of the eukaryote tree // Current Biology, 2009, V. 19, № 4, R165 — R167.
356
Burki et al., 2007.
357
Baldauf, 2008.
358
Hampl V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic «supergroups» // Proceedings of the National Academy of Sciences, 2009, V. 106, № 10, 3859–3864.
359
He D. et al. An alternative root for the eukaryote tree of life // Current Biology, 2014, V. 24, № 4, 465–470.
360
Adl et al., 2012.
361
Cavalier-Smith T. Deep phylogeny, ancestral groups and the four ages of life // Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 2010, V. 365, № 1537, 111–132.
362
Cavalier-Smith T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa // European Journal of Protistology, 2013, V. 49, № 2, 115–178.
363
Cavalier-Smith T. Symbiogenesis: mechanisms, evolutionary consequences, and systematic implications // Annual Review of Ecology, Evolution, and Systematics, 2013a, V. 44, 145–172.
364
Cavalier-Smith T. et al. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa // Molecular Phylogenetics and Evolution, 2014, V. 81, 71–85.
365
Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences — the choanoflagellate / sponge transition, neurogenesis and the Cambrian explosion // Philosophical Transactions of the Royal Society, B: Biological Sciences, 2017, V. 372, 1713.
366
Cavalier-Smith, 2009.
367
Cavalier-Smith T. The origins of plastids // Biological Journal of the Linnean