кетогруппой. Причем и глюкоза, и фруктоза имеют формулу C6H12O6. Иначе говоря, это изомеры.

Бывают и пятиуглеродные сахара. Например, рибоза — сахар с пятью атомами углерода, четырьмя гидроксильными группами и альдегидной группой. В отличие от глюкозы и фруктозы, рибоза используется как пищевая добавка относительно редко, хотя в любых продуктах ее все равно полно, потому что биохимическое значение этого вещества колоссально.

А бывают ли сахара с другой длиной углеродных цепочек — например, трех-, четырех-, семи-, восьми- или девятиуглеродные? С точки зрения химии — конечно же, бывают. Иногда они встречаются и в живых организмах: например, семиуглеродные сахара могут быть промежуточными продуктами в синтезе липидов и в некоторых других биохимических процессах. Но в целом биологическое значение этих сахаров не слишком велико, и нас они пока что могут не волновать.

Молекулы сахаров не слишком сложны. Но есть один фактор, делающий их гораздо более разнообразными, чем можно было бы подумать, глядя на обычные графические формулы. Этот фактор — стереоизомерия.

Вновь о правом и левом

Стереоизомерия у углеводов, прямо скажем, такая, что сам черт сломит в ней ногу. Например, если внимательно посмотреть на молекулу глюкозы, легко убедиться, что она содержит целых четыре асимметрических атома углерода (см. главу 4). Четыре, а не один, как в хорошо знакомых нам аминокислотах! А ведь каждый асимметрический атом углерода создает два стереоизомера. Что это означает? Если в молекуле есть второй асимметрический атом, то у каждого из этих стереоизомеров будет еще по два стереоизомера. Если есть третий, то и у каждого из этих двух будет еще по два. И так далее. Следовательно, если молекула содержит четыре асимметрических атома, то стереоизомеров будет 16 (24). Причем по свойствам эти изомеры могут различаться между собой достаточно сильно. Например, галактоза — это шестиуглеродный сахар, совершенно идентичный глюкозе по набору функциональных групп. В галактозе тоже пять гидроксилов и одна альдегидная группа. Ее отличие от глюкозы состоит исключительно в том, что это другой стереоизомер. Между тем галактоза совершенно иначе участвует в обмене веществ, в том числе и у человека. Ферменты, работающие с глюкозой (которая у нас служит важнейшим питательным веществом), для ее усвоения не подходят. Галактоза перерабатывается особым ферментом, служащим только для этой цели. Кстати, его генетически обусловленное отсутствие у некоторых людей бывает причиной серьезного заболевания — галактоземии.

Как и другие вещества со стереоизомерией, сахара делятся на D- и L-формы — соответственно «правовращающие» и «левовращающие». Здесь эти слова взяты в кавычки, потому что у сахаров связь формы молекулы и направления вращения поляризованного света на самом деле крайне запутанна. В детали нам вникать нет нужды. Достаточно знать, что химики придумали определенную чисто формальную процедуру, требующую считать сахар D- или L-формой в зависимости от положения радикалов у последнего асимметрического атома в углеродной цепочке. Например, у глюкозы это будет пятый атом, если считать от альдегидной группы.

Глюкоза и галактоза отличаются ориентацией групп у четвертого атома углерода. Они уже не считаются изомерами одного и того же сахара, а носят разные названия. Но при этом и глюкоза, и галактоза, участвующие в биологическом обмене веществ, — это D-изомеры.

В живой природе D-сахара вообще преобладают. Это почти такая же хиральная чистота, как и в случае с аминокислотами. Только у аминокислот преобладают «левые» изомеры, а у сахаров, наоборот, «правые».

Чем вызвана эта разница? В последнее время появилась вполне убедительная гипотеза, что дело тут как раз в аминокислотах. А точнее — в их каталитическом действии. Напомним, что катализатор — это вещество, ускоряющее химическую реакцию, но само не претерпевающее в ней стойких изменений (см. главу 3). Так вот, существуют многоступенчатые процессы синтеза углеводов, которые катализируются аминокислотами (именно отдельными аминокислотами, а не целыми белками). И показано экспериментально, что L-аминокислоты катализируют синтез шестиуглеродных сахаров таким хитрым образом, что на выходе получается больше D-изомеров этих сахаров, чем L-изомеров. Причем часто намного больше: избыток D-изомера сахара в таких реакциях может достигать нескольких десятков процентов[45]. Проще говоря, «левые» аминокислоты диктуют преобладание «правых» сахаров. И дело тут в чисто химическом механизме синтеза сахаров, в котором аминокислоты принимают участие.

Тогда получается, что никаких загадочных космических причин избытка D-сахаров искать не надо. Если такие причины и действовали — то в основном на аминокислоты (см. об этом главу 4). А что касается сахаров, то здесь живые организмы просто приспособили к делу те молекулы, которые предложила им обычная химия.

О пятиугольниках и шестиугольниках

До сих пор мы по умолчанию предполагали, что молекула сахара представляет собой линейную цепочку. А как же иначе? Но на самом деле в тех условиях, которые господствуют в живом организме, сахара обычно переходят из линейной формы в более энергетически выгодную циклическую. Как это происходит, можно посмотреть на примере глюкозы. Будем иметь в виду, что атомы углерода в глюкозе принято нумеровать, начиная от альдегидной группы. Атом, образующий эту группу, — первый, атом на противоположном конце цепочки — шестой. (Из формулы, кстати, нетрудно видеть, что асимметрическими тут являются второй, третий, четвертый и пятый атомы.)

Итак, переход глюкозы в циклическую форму начинается с того, что в альдегидной группе разрывается одна из двух связей, соединяющих кислород с углеродом (см. рис. 6.2А, Б). В результате у кислорода освобождается валентность, на которую переходит водород от гидроксильной группы предпоследнего (в данном случае пятого) атома углерода (см. рис. 6.2В). Тем самым при первом атоме образуется гидроксильная группа, которой раньше там не было. Теперь в молекуле остается две свободные валентности: у атома углерода бывшей альдегидной группы и у атома кислорода бывшего гидроксила. Они замыкаются друг на друга (см. рис. 6.2Г). Получается цикл. А точнее, кольцо, в котором первый и пятый атомы углерода соединены друг с другом через атом кислорода (−O−). В случае глюкозы это кольцо шестичленное, в него входят пять углеродов и кислород.

По такому же принципу переходят в циклическую форму и рибоза, и фруктоза, и другие сахара. Правда, и у рибозы, и у фруктозы кольца получаются пятичленными. По этому признаку их легко отличить от глюкозы, особенно если мы видим уже нарисованную кем-нибудь формулу.

Существование в циклических и линейных формах — еще один вид изомерии, на этот раз свойственный только сахарам. После перехода из линейной формы в циклическую гидроксильная группа исчезает при пятом атоме углерода, зато появляется при первом. Но это все равно глюкоза.

Напоследок — еще одна деталь, которая может нам пригодиться. В циклической форме сахара гидроксильные группы могут находиться по

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×