В 1939 году известные биохимики Владимир Александрович Энгельгардт и Милица Николаевна Любимова совершили поразительное открытие. Их интересовала биохимия мышечного сокращения, и они сумели выделить из клеток мышечный белок — миозин, — конденсированный в виде нитей. Дальше оказалось, что если поместить эти нити в раствор АТФ, то происходят одновременно два процесса. Во-первых, АТФ расщепляется до АДФ и фосфата, надо полагать — под действием миозина. А во-вторых, нити миозина при этом… укорачиваются. Во всяком случае, существенно уменьшается максимальная длина, до которой их можно растянуть.
Так была открыта АТФазная активность миозина. И заодно было очень наглядно показано, что энергия, высвобожденная при расщеплении АТФ, может тут же «конвертироваться» в механическую работу. Правда, на самом деле чистого миозина для этого недостаточно, нужен как минимум еще один белок — актин. Но в принципе Энгельгардт и Любимова все поняли абсолютно верно. Их открытие, кстати, было сразу же оценено современниками: в 1943 году авторы получили за него высшую тогда в СССР награду — Сталинскую премию.
Любая АТФаза является белком, который, расщепляя АТФ, за счет высвобожденной при этом энергии одновременно совершает работу (не обязательно механическую: с тем же успехом это может быть перенос веществ через клеточную мембрану или какой-нибудь энергоемкий синтез). Если белки-АТФазы — аналоги маленьких двигателей, то АТФ служит для клетки самым настоящим топливом.
Иногда связи между остатками фосфата в формуле АТФ обозначают не прямой черточкой, как обычные ковалентные связи, а волнистой (~). Это предложенное немецким биохимиком Фрицем Липманом обозначение тех связей, при разрыве которых, собственно, и выделяется достаточно большая по биохимическим меркам энергия. Такие связи называются высокоэнергетическими или макроэргическими. АТФ — не единственное вещество с макроэргическими связями, но, безусловно, самое распространенное. Это энергетическая «разменная монета» живой клетки.
Во избежание недоразумений надо сказать, что количество энергии, высвобождаемое при разрыве макроэргической связи в АТФ, на самом деле вовсе не является каким-то потрясающе огромным. Как раз наоборот, по меркам обычной химии, особенно неорганической, оно скорее невелико. Это объясняется очень просто: слишком большую разовую порцию энергии клетке было бы труднее пустить в дело.
Фермент аденилатциклаза может превратить АТФ в другое интересное соединение — циклический аденозинмонофосфат (цАМФ). Это довольно странно выглядящая молекула, где один и тот же фосфат связан сразу с двумя гидроксилами рибозы (третьим и пятым). Ни для переноса энергии, ни для построения каких-либо более сложных соединений цАМФ не годится. Зато это важное сигнальное вещество, служащее посредником при передаче информации внутри клеток, а иногда и между клетками.
Например, цАМФ может через цепочку посредников запустить процесс распада нерастворимого гликогена до растворимой глюкозы — это существенно ускоряет обмен веществ (см. главу 6). Для того чтобы этот эффект не длился слишком долго, существует фермент фосфодиэстераза, который разрывает в молекуле цАМФ фосфатный мостик и превращает его в безобидный обычный АМФ, лишенный сигнальных функций. Благодаря этому ферменту молекулы цАМФ в клетках быстро расщепляются, и мы избегаем перерасхода энергии. А самым распространенным блокатором фосфодиэстеразы является не что иное, как уже знакомый нам кофеин. Это еще один способ, которым кофеин может действовать на организм. Тут мы имеем дело с типичным случаем конкурентного ингибирования, когда активный центр фермента «запирается» молекулой, близкой по структуре к нормальному субстрату этого фермента, но слегка отличающейся от него (см. главу 3). Именно такой молекулой кофеин и служит. Правда, на фосфодиэстеразу кофеин действует только в огромных концентрациях, которые в организме достигаются редко. Так что развенчивать кофеин, лишая его статуса психоактивного вещества, не стоит: в первую очередь он действует все-таки на аденозиновые рецепторы, которые сидят на нервных клетках.
8. Нуклеиновые кислоты
Биохимией называют у нас те случаи, когда скверные химики занимаются грязными и плохими работами на малоподходящем для химии материале. Не это биохимия. Биохимия — это физико-химический структурный анализ активных макромолекул.
Николай Тимофеев-Ресовский (цитируется по документальному роману Даниила Гранина «Зубр»)Полимер, мономерами которого являются нуклеотиды, называется нуклеиновой кислотой.
Что можно сказать о таком полимере? Прежде всего, он в некотором отношении сложнее, чем состоящий из аминокислот белок, потому что любой нуклеотид — это (как мы теперь знаем) куда более сложная молекула, чем любая аминокислота. В нуклеиновой кислоте остатки сахара, принадлежащие разным нуклеотидам, соединены между собой через фосфатные группы. В результате получается длинная цепочка чередующихся остатков сахара и фосфата — так называемый сахаро-фосфатный остов, вбок от которого торчат азотистые основания. Представим эту картину, и можно считать, что общее представление о нуклеиновой кислоте мы уже получили.
Разные нуклеиновые кислоты называются по-разному в зависимости от того, какой у них в нуклеотидах сахар. Если это рибоза, то кислота рибонуклеиновая, а если дезоксирибоза — соответственно, дезоксирибонуклеиновая. Сокращения, обозначающие эти кислоты, — ДНК и РНК — вряд ли будут для кого-то из читателей большой новостью. В нашем перенасыщенном информацией мире про них труднее не услышать, чем услышать.
Объединить нуклеотиды в нуклеиновую кислоту в принципе очень просто. От гидроксильной группы, принадлежащей сахару одного нуклеотида, отщепляется водород (−H). От фосфата, принадлежащего другому нуклеотиду, отщепляется гидроксильная группа целиком (−OH). Эти отщепленные фрагменты образуют воду (H−O−H), а нуклеотиды соединяются по освободившимся связям. В результате между сахаром одного нуклеотида и фосфатом другого остается атом кислорода (−O−). Правда, в реальной живой клетке все происходит несколько сложнее (синтез нуклеиновой кислоты там начинается не с нуклеозидмонофосфатов, а с нуклеозидтрифосфатов). Но нам это сейчас неважно. Важно, что в итоге получается цепочка нуклеотидов, сахара которых соединены фосфатными мостиками.
Теперь — серьезное дополнение (см. рис. 8.1А). Соединяющий нуклеотиды фосфатный мостик всегда расположен между 3'-углеродом одного сахара и 5'-углеродом другого. У возникающей цепочки нуклеотидов два конца, на одном из которых находится свободный фосфат (это 5'-конец), а на другом — свободная гидроксильная группа сахара (это 3'-конец; в устной речи прямо так и говорится — «пять-штрих-конец» и «три-штрих-конец»). Запомним это! Различать направления 5'→3 и 3'→5' очень важно: некоторые биологические функции нуклеиновых кислот без этого просто невозможно понять.
Хорошо еще, что ДНК и РНК —