планеты самых разных размеров, обращающиеся вокруг звезд на самых разных расстояниях. «Там есть планеты, аналогов которым в нашей Солнечной системе нет, некоторые из них по размеру попадают в промежуток между Землей и Нептуном, другие много меньше Меркурия, — говорит профессор Сара Сигер. — Но нам до сих пор не удалось обнаружить ни одной копии нашей Солнечной системы». В самом деле, получено так много странных результатов, что у астрономов не хватает теорий для их объяснения. «Чем больше данных мы получаем, тем меньше понимаем, — признается Сигер. — Полная путаница»[50].

Мы не в состоянии объяснить «поведение» даже самых часто встречающихся экзопланет. К примеру, многие газовые гиганты размером с Юпитер движутся, вопреки ожиданиям, не по круговым, а по сильно вытянутым эллиптическим орбитам.

Некоторые экзопланеты размером с Юпитер все же обращаются по круговым орбитам, но при этом располагаются так близко к центральной звезде, что в нашей Солнечной системе они оказались бы внутри орбиты Меркурия. Эти газовые гиганты называют «горячими юпитерами», звездный ветер постоянно сдувает с них атмосферу в открытый космос. Прежде астрономы считали, что планеты типа Юпитера сформировались в глубоком космосе, за миллиарды километров от центральной звезды. Если так и было, каким образом они подобрались так близко к ней?

Профессор Сигер признает, что ученые не знают этого наверняка. Но наиболее вероятный ответ стал для всех неожиданностью. По одной из теорий, все газовые гиганты формируются во внешних областях звездной системы, где много льда, способного собирать водород, гелий и пыль. Но в некоторых случаях в центральной части плоскости звездной системы также много пыли. Газовый гигант может постепенно терять энергию от трения при движении сквозь пылевое облако и двигаться по сходящейся спирали к центральной звезде.

Это объяснение вводит прежде неслыханную еретическую идею о странствующих планетах. Подбираясь потихоньку к своему солнцу, они могут пересечь орбиту какой-нибудь небольшой землеподобной планеты, выбросив ее в открытый космос. Так маленькая каменная планета может стать планетой-странницей, дрейфующей в одиночестве в открытом космосе и не привязанной ни к одной звезде. Поэтому мы не ожидаем увидеть землеподобные планеты в солнечных системах с газовыми гигантами на сильно эллиптических или близких к светилу орбитах.

Задним числом можно сказать, что эти странные результаты следовало предвидеть. Поскольку в нашей Солнечной системе планеты движутся по красивым правильным окружностям, астрономы считали, что шары из пыли, водорода и гелия, которые превращаются в солнечные системы, всегда уплотняются равномерно. Теперь же мы понимаем, что с гораздо большей вероятностью гравитация сжимает их беспорядочным, случайным образом, в результате чего возникают планеты на вытянутых или неправильных орбитах, которые могут пересекаться и сталкиваться друг с другом. Это важно, ведь вполне может оказаться, что для жизни благоприятны только солнечные системы с круговыми орбитами планет, как наша.

Землеподобные планеты

Землеподобные планеты невелики и вызывают лишь легкое ослабление или слабое искажение света от центральной звезды. Но при помощи космического телескопа «Кеплер» и гигантских наземных телескопов астрономы начали находить в космосе «суперземли», то есть каменные, подобно Земле, планеты, способные поддерживать жизнь в том виде, какой мы ее знаем, но крупнее Земли на 50–100 %. Мы пока не можем ничего сказать о происхождении таких планет, но в 2016–2017 гг. было сделано несколько связанных с ними сенсационных открытий.

Проксима Центавра — ближайшая, после нашего Солнца, к Земле звезда. На самом деле она является частью тройной звездной системы и обращается вокруг пары более крупных звезд, известных как альфа Центавра A и B, обращающихся друг вокруг друга. Астрономы были поражены, когда около Проксимы Центавра обнаружилась планета всего на 30 % крупнее Земли. Она получила название Проксима Центавра b.

«Это меняет все правила игры в экзопланетологии, — заявил Рори Барнс, астроном из Университета штата Вашингтон в Сиэтле. — То, что она так близка к нам, означает, что мы имеем возможность следить за ней успешнее, чем за какой бы то ни было другой планетой из обнаруженных до сих пор»[51]. Новые гигантские телескопы, которые сейчас разрабатываются, такие как космический телескоп «Джеймс Уэбб», сумеют, возможно, получить первые фотографии этой планеты. Профессор Сигер говорит: «Это поистине феноменально. Мы столько лет гадали, существуют ли внесолнечные планеты. Кто бы мог подумать, что одна такая планета имеется у ближайшей к нам звезды?»[52]

Центральная звезда Проксимы Центавра b — тусклый красный карлик массой всего 12 % от массы Солнца. Чтобы попадать в зону жизни, где планета сможет поддерживать жидкую воду и даже, возможно, океаны, она должна располагаться относительно близко к этой звезде. Радиус орбиты планеты Проксима Центавра b составляет всего 5 % от радиуса земной орбиты. Она намного быстрее Земли обращается вокруг своей звезды, совершая один полный оборот каждые 11,2 суток. Сейчас идут горячие споры о том, совместимы ли условия на Проксиме Центавра b с жизнью земного типа. Одна из основных причин для сомнений — то, что эту планету, наверное, постоянно бомбардируют частицы звездного ветра, которые могут быть в 2000 раз энергичнее тех, что попадают на Землю. Чтобы защититься от этой бомбардировки, Проксима Центавра b должна обладать сильным магнитным полем. Пока у нас недостаточно информации, чтобы определить, так ли это.

Выдвинута гипотеза, что Проксима Центавра b может находиться со своей звездой в состоянии приливного захвата и потому обращена к звезде всегда одной и той же стороной, как Луна к Земле. Тогда эта сторона должна быть постоянно разогрета, а на другой должен царить вечный холод. В этом случае океаны жидкой воды могут существовать только в узкой полосе между двумя полушариями, где возможна умеренная температура. Допустим и другой вариант: если планета Проксима Центавра b обладает достаточно плотной атмосферой, ветры могут выравнивать температуру на ее поверхности. Тогда жидкие океаны могут существовать повсюду на планете.

Следующий шаг — определение состава атмосферы и наличие или отсутствие в ней воды и кислорода. Проксима Центавра b была обнаружена при помощи доплеровского метода, но химический состав ее атмосферы легче оценить при помощи транзитного метода. Когда какая-нибудь экзопланета проходит непосредственно перед центральной звездой своей системы, крохотная часть света звезды доходит до нас сквозь ее атмосферу. Молекулы определенных веществ в атмосфере поглощают звездный свет определенных длин волн, что позволяет ученым судить о природе этих молекул. Однако, чтобы это можно было проделать, ориентация орбиты экзопланеты должна быть подходящей, и вероятность того, что орбита Проксимы Центавра b ориентирована правильно, составляет всего 1,5 %.

Обнаружение молекул водяного пара на землеподобной планете стало бы поразительным достижением. Профессор Сигер объясняет, что «если говорить о маленькой

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату