В завершение мы рассмотрим возможность того, что нам предстоит встретить не только смерть Земли, но и гибель самой Вселенной. Хотя наша Вселенная еще молода, можно предположить, что когда-нибудь в отдаленном будущем мы, возможно, вплотную подойдем к Большому замерзанию: температуры упадут почти до абсолютного нуля, и жизнь, какой мы ее сегодня знаем, по всей видимости, перестанет существовать. Не исключено, однако, что к тому времени наши технологии окажутся достаточно развитыми, чтобы человечество смогло покинуть умирающую Вселенную и проникнуть сквозь гиперпространство в новую, более молодую.
Теоретическая физика (моя специализация) прорабатывает идею о том, что наша Вселенная может представлять собой всего лишь один-единственный пузырек в мультивселенной, состоящей из множества других пузырьков-вселенных. Может быть, в мультивселенной найдется и новый дом для нас. Вглядываясь во множество вселенных, мы, возможно, сумеем разглядеть величественные замыслы Создателя звезд.
Так что фантастические достижения научной фантастики, когда-то считавшиеся побочным продуктом излишне живого воображения мечтателей, могут когда-нибудь стать реальностью.
Человечество стоит на пороге, возможно, величайшего приключения в своей истории. Не исключено, что пропасть, отделяющая рассуждения Азимова и Стэплдона от реальности, будет преодолена при помощи тех поразительных открытий и стремительных изменений, которые в настоящее время происходят в науке. И первый этап нашего долгого пути к звездам начнется тогда, когда мы сумеем покинуть Землю. Как гласит старая китайская пословица, путь в тысячу ли начинается с первого шага. Дорога к звездам начинается с самой первой ракеты.
Часть I
ПОКИДАЯ ЗЕМЛЮ
Всякий, кто сидит на верхушке крупнейшей в мире системы с кислородно-водородным топливом, зная, что ее собираются поджечь снизу, и не испытывает хотя бы легкого беспокойства, не до конца понимает сложившуюся ситуацию.
Астронавт Джон Янг1. Подготовка к старту
19 октября 1899 г. семнадцатилетний юноша залез на вишню — и пережил озарение. Он только что прочел «Войну миров» Герберта Уэллса, и мысль о том, что ракеты помогут нам в исследовании Вселенной, показалась ему ужасно интересной и вызвала прилив энтузиазма. Юноша думал, как чудесно было бы сделать какое-нибудь устройство, которое хотя бы в принципе могло добраться до Марса, и вдруг осознал, что исследовать Красную планету — наша судьба. К тому моменту, когда юноша спустился с дерева на землю, его жизнь уже изменилась навсегда. Он посвятил свою жизнь мечте — созданию ракеты, которая могла бы воплотить в жизнь его видение. До конца своих дней он неизменно отмечал этот переломный день — 19 октября.
Звали этого молодого человека Роберт Годдард. Именно он построил первую жидкостную многоступенчатую ракету и тем самым запустил цепочку событий, которым суждено было изменить ход истории человечества.
Циолковский — одинокий мечтатель
Годдард принадлежал к небольшой горстке первопроходцев, которые, несмотря на изоляцию, бедность и насмешки окружающих, упорно продвигались вперед наперекор всему — и в итоге заложили фундамент для космических путешествий. Одним из первых в ряду этих мечтателей был великий русский ученый-ракетчик Константин Циолковский, который продумал теоретические основы космических путешествий и проложил дорогу Годдарду. Циолковский был затворником, жил в бедности и с трудом сводил концы с концами, зарабатывая на жизнь учительством. В юности он проводил большую часть времени в библиотеке — проглатывал научные журналы, изучал Ньютоновы законы движения и пытался применить их к космическим путешествиям[3]. Его мечтой было путешествие на Луну и Марс. Самостоятельно, без помощи ученого сообщества, он разобрался в математике, физике и механике ракетной техники и рассчитал для Земли скорость убегания (она же вторая космическая), то есть скорость, необходимую для выхода из поля тяготения нашей планеты. Эта скорость оказалась равна 11,2 км/c, намного больше тех 7 м/c, до которых можно было разогнаться на лошадях в его время.
В 1903 г. Циолковский опубликовал знаменитое ракетное уравнение, позволяющее определить максимальную скорость ракеты исходя из ее массы и запаса топлива. Из этого уравнения явствовало, что зависимость между скоростью и массой топлива носит экспоненциальный характер. Было бы логично предположить, что для удвоения скорости ракеты достаточно удвоить количество топлива. На самом же деле при увеличении скорости расход возрастает экспоненциально и для дополнительной прибавки скорости требуется громадное количество топлива.
Cледовательно, ракете нужно очень много горючего, чтобы покинуть Землю. С помощью этой формулы Циолковский оценил, сколько топлива необходимо для полета к Луне, задолго до того, как его мечта воплотилась в реальность.
Циолковский следовал принципу: «Земля — колыбель человечества, но нельзя вечно жить в колыбели». Он придерживался философии так называемого космизма, связывающей будущее человечества с исследованием открытого космоса. В 1911 г. он писал: «Стать ногой на почву астероидов, поднять камень с Луны, устроить движущиеся станции в эфирном пространстве, образовать живые кольца вокруг Земли, Луны, Солнца, наблюдать Марс на расстоянии нескольких десятков верст, спуститься на его спутники или даже на самую его поверхность — что, по-видимому, может быть сумасброднее!»[4]
Хотя сам Циолковский был слишком беден, чтобы превратить свои математические выкладки в действующие модели, за продолжателями дело не стало: следующий шаг сделал Роберт Годдард. Он своими руками построил прототипы, которым впоследствии суждено было стать основой космических путешествий.
Роберт Годдард — отец ракетной техники
Роберт Годдард заинтересовался наукой в детстве, когда на его глазах проводили электричество в его родной город. Уже тогда он твердо уверился, что наука революционно изменит нашу жизнь во всех ее аспектах. Отец, поощряя интерес мальчика, купил ему телескоп, микроскоп и подписку на журнал Scientific American. Первые эксперименты Годдарда были связаны с воздушными змеями и шарами. Однажды в библиотеке он случайно наткнулся на знаменитые «Математические начала» Исаака Ньютона и познакомился с законами движения. Вскоре после этого его интересы определились: Годдард сосредоточился на том, чтобы применить законы Ньютона в ракетной технике.
Годдард не просто удовлетворял свое любопытство, он предложил три важных новшества. Во-первых, экспериментируя с различными видами топлива, он пришел к выводу, что порошковое топливо для ракеты неэффективно. Китайцы изобрели порох много столетий назад и давно использовали его в ракетах, но порох сгорает неравномерно, так что ракеты китайцев в основном были не более чем игрушками. Первым блестящим нововведением Годдарда стала замена порошкового топлива жидким, расход которого можно контролировать, добиваясь ровного и чистого горения. Он построил ракету с двумя баками: в одном было топливо (к примеру, спирт), в другом — окислитель (к примеру, жидкий кислород). Жидкости через