в пятнадцать миль в час; эта чудесная параболическая траектория закономерно завершилась на моем затылке.

Представим, что моя машина в тот момент подъезжала к светофору с относительно небольшой скоростью, скажем, в десять миль в час. Тогда наблюдатель на тротуаре, видевший все это, заметил, что рвотные массы ребенка летят со скоростью 25 миль в час: скорость машины относительно наблюдателя (10 миль в час) плюс скорость масс (15 миль в час), а их траектория при движении к моему (на этот раз движущемуся) затылку опять же хорошо описывалась бы Ньютоном уже при этой более высокой (25 миль в час) начальной скорости.

Пока все в порядке. Однако здесь есть проблема. Теперь, когда моя дочь стала старше, она обожает водить машину. Представим себе, что она едет следом за машиной приятеля, одновременно разговаривая с ним по сотовому телефону (при помощи гарнитуры, для безопасности), и хочет сказать ему, что нужно повернуть направо, чтобы попасть туда, куда они вместе едут. Она говорит по телефону, и электроны в нем скачут туда-сюда, порождая электромагнитную волну (в микроволновом радиодиапазоне). Волна проходит до сотового телефона ее приятеля со скоростью света (на самом деле она, быть может, успевает подняться до спутника, а затем ее излучают оттуда вниз, но забудем пока про эти сложности), и тот, вовремя получив информацию, успевает сделать нужный поворот.

Итак, что в этой ситуации измерит стоящий у дороги наблюдатель? Здравый смысл подсказывает, что радиосигнал должен двигаться от машины моей дочери до машины ее приятеля со скоростью света, которую можно было бы измерить прибором в машине моей дочери (обозначим эту скорость c), плюс скорость машины.

Но здравый смысл обманчив именно потому, что основывается на повседневном опыте. В обычной жизни мы не измеряем время, за которое свет, или микроволновое излучение, перемещается из одного угла комнаты в другой или из одного телефона в другой неподалеку. Если бы здравый смысл был здесь применим, то наблюдатель на обочине измерил бы (при помощи сложного оборудования), как прыгают туда-сюда электроны в телефоне моей дочери, и увидел бы, как излучается микроволновый сигнал; этот сигнал двигался бы со скоростью c плюс, скажем, 10 миль в час.

Однако великий триумф Максвелла заключался в том, что ему удалось показать: скорость электромагнитных волн, излученных колеблющимся зарядом, можно вычислить, просто измерив величину электрической и магнитной сил. Следовательно, если для наблюдателя на обочине дороги волны двигались бы со скоростью c плюс 10 миль в час, то значения электрической и магнитной сил для него отличались бы от значений, наблюдаемых моей дочерью, для которой волны двигались бы со скоростью c.

Но Галилей говорит нам, что это невозможно. Если бы измененные значения электрических и магнитных сил различались для двух наблюдателей, то можно было бы сказать, кто из них движется, а кто нет, поскольку законы физики – в данном случае электромагнетизма – содержали бы разные значения для каждого из наблюдателей.

Таким образом, прав мог быть либо Галилей, либо Максвелл, но не оба одновременно. Возможно потому, что Галилей работал во времена более примитивной науки, большинство физиков склонялось на сторону Максвелла. Они решили, что во Вселенной, должно быть, имеется некая абсолютная покоящаяся система отсчета и что расчеты Максвелла приложимы только к этой системе. А по отношению ко всем наблюдателям, движущимся по отношению к этой системе, электромагнитные волны должны иметь иную скорость, нежели вычисленная Максвеллом.

Давняя научная традиция обеспечила этой идее физическую поддержку. В конце концов, если свет представляет собой электромагнитное возмущение, то возмущением чего оно является? Тысячи лет философы рассуждали об «эфире» – некоем невидимом фоновом веществе, заполняющем все пространство, и естественно было заподозрить, что электромагнитные волны путешествуют именно в этой среде, как звуковые волны распространяются в воздухе или в воде. Электромагнитные волны должны были бы двигаться в такой среде с некоторой характерной фиксированной скоростью (рассчитанной Максвеллом), а для наблюдателя, движущегося по отношению к этому фоновому заполнителю, в зависимости от его скорости волны распространялись бы быстрее или медленнее.

Несмотря на интуитивную разумность, такое представление было бегством от действительности, поскольку если вспомнить аналитические выкладки Максвелла, то получится, что наблюдатели, движущиеся друг относительно друга, измерят различные значения электрической и магнитной сил. Быть может, такой вариант все же представлялся приемлемым, поскольку все скорости, которые реально можно было получить в то время, были так малы в сравнении со скоростью света, что обсуждаемые различия оказались бы очень малы и обнаружить их наверняка не удалось бы.

Однажды актер Алан Алда в публичном выступлении, где присутствовал и я, заявил, что, вопреки расхожему мнению, искусство требует упорной работы, а наука невозможна без творческого начала. Понятно, что для того и другого нужны оба названных качества, но мне в его версии понравилось то, что в ней подчеркивается творческая, художественная сторона науки. Я бы добавил к этому, что оба занятия требуют интеллектуальной смелости. Творческое начало само по себе ни к чему не приводит, если его не использовать. Новые идеи, как правило, застаиваются и умирают, если у автора не находится храбрости применить их.

Я упоминаю об этом здесь потому, что, возможно, истинной мерой гения Эйнштейна была не его математическая подкованность (хотя, вопреки расхожему мнению, он был талантливым математиком), а скорее творческий потенциал и интеллектуальная уверенность, питавшие его упорство.

Вызов, стоявший перед Эйнштейном, заключался в том, чтобы примирить и совместить две противоречащие друг другу идеи. Отбросить одну из них – слишком простой путь. А вот чтобы найти способ устранить противоречие, необходим творческий подход.

Решение Эйнштейна не было сложным, но это не означает, что найти его было просто. Все это напоминает мне исторический анекдот про Христофора Колумба, который перед экспедицией в Новый Свет, чтобы получать бесплатную выпивку, держал пари на то, что сумеет поставить яйцо на острый конец на стойке бара. После того как владелец бара принимал пари, Колумб разбивал яйцо с острого кончика и легко ставил его на стойку. В конце концов, он же не оговаривал, что яйцо при этом должно остаться целым.

Предложенное Эйнштейном разрешение парадокса Галилея – Максвелла было весьма похожим на фокус Колумба. Ведь если оба они – и Максвелл, и Галилей – правы, то где-то что-то нужно сломать, чтобы картинка сложилась.

Вопрос в том, что именно. Чтобы и Максвелл, и Галилей были правы, необходимо было нечто откровенно безумное: в приведенном мной примере оба наблюдателя должны получить при измерении одинаковую по отношению к ним (а не различающуюся на скорость машины) скорость микроволнового излучения от сотового телефона моей дочери.

Однако Эйнштейн задал себе интересный вопрос. В конце концов, что значит измерить скорость света? Скорость определяется путем

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×