через миллиард лет после Большого взрыва, и позволяют нам наносить на карты громадные космические структуры, включающие сотни галактик и раскинувшиеся на сотни миллионов световых лет, рассыпанные среди ста триллионов или около того галактик видимой Вселенной.

За объяснением этих особенностей теоретики обращаются к идее, которая возникла благодаря развитию теорий Великого объединения. В 1981 г. Алан Гут понял, что нарушающий симметрию переход, который мог иметь место на масштабе ТВО в молодой Вселенной, возможно, отличается от перехода, нарушающего симметрию между слабым взаимодействием и электромагнетизмом. В случае ТВО хиггсоподобное поле, которое конденсируется в пространстве, нарушая ТВО-симметрию между сильным и электрослабым взаимодействиями, может на короткое время замереть в метастабильном высокоэнергетическом состоянии, прежде чем релаксировать и перейти к финальной конфигурации. Но пока оно пребывало в этом состоянии «ложного вакуума», поле должно было обладать энергией, которая высвободилась, когда оно в конечном итоге релаксировало и перешло в предпочтительное для него состояние с самой низкой энергией.

Гут задался вопросом: что произошло бы в ранней Вселенной, если бы подобное случилось во время перехода, описываемого теорией Великого объединения? Что будет, если некое скалярное поле, ведущее себя при этом переходе подобно хиггсовскому полю, останется на короткое время в своем первоначальном (сохраняющем симметрию) состоянии, хотя Вселенная уже охладилась ниже точки, где предпочтительным становится новое (нарушающее симметрию) конденсированное состояние покоя? Гут понял, что этот тип энергии, содержащийся в поле по всему объему пространства до завершения перехода, должен вызывать гравитационное отталкивание. Это заставит Вселенную расширяться – потенциально в громадное число раз, возможно, на двадцать пять или более порядков – за микроскопически короткое время.

Далее он обнаружил, что этот период стремительного расширения, которое он назвал инфляцией, мог бы разрешить множество известных парадоксов, связанных с картиной Большого взрыва, включая вопрос о том, почему Вселенная так однородна в больших масштабах и почему трехмерное пространство в больших масштабах представляется геометрически почти плоским. Без инфляции обе эти проблемы выглядят неразрешимыми. Первая из них решается благодаря тому, что в период стремительного расширения любые начальные неоднородности сглаживаются – как сморщенный воздушный шар становится гладким, когда его надувают. Продолжая аналогию с шаром, заметим, что поверхность шара, надутого до очень больших размеров, скажем величиной с Землю, может выглядеть очень плоской, как степи Канзаса. Хотя это двумерный образ, он в принципе применим и к трехмерной кривизне самого космоса. После инфляции пространство должно казаться плоским, то есть выглядеть в точности как Вселенная, в которой, как считало до недавнего времен большинство из нас, мы живем, – где параллельные никогда не пересекаются, а оси x, y и z указывают в одну и ту же сторону в любой точке Вселенной.

После завершения стадии инфляции энергия, запасенная в состоянии ложного вакуума по всему объему пространства, высвобождается, порождая частицы и заново нагревая Вселенную до высокой температуры; при этом складываются естественные и реалистичные начальные условия для последующего стандартного расширения горячего Большого взрыва.

И это еще не все. Через год после того, как Гут предложил свою идею, сразу несколько групп провели расчеты, пытаясь понять, что происходило с частицами и полями в процессе стремительного инфляционного расширения Вселенной. Они обнаружили, что небольшие неоднородности, возникшие вследствие квантовых эффектов в начальные моменты времени, были затем «заморожены» в период инфляции. После окончания инфляции эти небольшие неоднородности могли вырасти и породить галактики, звезды, планеты и т. п.; кроме того, они оставили бы свой отпечаток на космическом микроволновом фоне, очень напоминающий тот рисунок, который впоследствии был обнаружен. Однако при использовании разных инфляционных моделей можно также получить другие предсказания для анизотропии реликтового излучения (в данный момент инфляция скорее модель, чем полноценная теория, и, поскольку эксперимент не определил пока никакого единственного перехода по теории Великого объединения, верными могут оказаться самые разные варианты).

Есть еще одно волнующее и более однозначное предсказание, связанное с инфляцией. В период быстрого расширения в пространстве должна была возникнуть рябь, получившая название гравитационных волн. Эта рябь должна была породить еще одну характерную сигнатуру в космическом микроволновом фоне, которую можно обнаружить. В 2014 г. эксперимент BICEP объявил об обнаружении сигнала, идентичного предсказанному, что вызвало невероятное возбуждение как в теоретическом, так и в наблюдательном сообществе. Мы с Фрэнком Вильчеком написали статью, в которой не только отмечали, что такое наблюдение должно указывать на масштаб нарушения симметрии, соответствующий масштабу нарушения симметрии в теории Великого объединения с суперсимметрией, но и что оно должно однозначно продемонстрировать, что гравитация на малых масштабах должна описываться квантовой теорией, так что поиск квантовой теории гравитации дело не бесполезное.

Однако, к сожалению, заявление BICEP оказалось преждевременным. Аналогичный сигнал могли дать другие фоновые явления в нашей Галактике, и на момент написания книги ситуация по-прежнему представляется мутной; однозначного подтверждения ни инфляции, ни квантовой гравитации пока нет.

Совсем недавно, между завершением первого черновика этой книги и ее окончательным вариантом, было сделано первое достоверное открытие гравитационных волн; сделал его удивительный комплект детекторов, известный как LIGO (Laser Interferometer Gravitational-wave Observatory) и расположенный в Хэнфорде (штат Вашингтон) и Ливингстоне (штат Луизиана). LIGO – впечатляющая масштабная установка. Чтобы обнаружить гравитационные волны, порожденные слиянием черных дыр в далеких галактиках, экспериментаторам нужно зафиксировать колеблющуюся разницу в длине двух перпендикулярных плеч детектора длиной по четыре километра каждое, равную одной тысячной доле размера протона. Это все равно что измерить расстояние от Земли до ближайшей к нашему Солнцу звезды, альфы Центавра, с точностью до толщины человеческого волоса!

Как ни поразительно открытие инструментом LIGO гравитационных волн[14], сами волны, которые удалось зарегистрировать, представляют собой результат далекого астрофизического столкновения, а не первых мгновений Большого взрыва. Однако успех LIGO даст старт строительству новых детекторов, так что гравитационная астрономия станет, скорее всего, астрономией XXI века.

Если продолжатели дела LIGO и BICEP в этом или следующем столетии смогут непосредственно измерить сигнатуру инфляционных гравитационных волн, это откроет перед учеными окно прямо в физику Вселенной в тот момент, когда ее возраст составлял менее одной миллиардной миллиардной миллиардной миллиардной доли секунды. Это позволит нам непосредственно проверить и свои представления об инфляции, и даже Великое объединение, а может быть, даже прольет свет на возможное существование иных вселенных, разом превратив то, что сегодня является метафизикой, в физику.

Пока же инфляция – это всего лишь мотивированное предположение, судя по всему, естественным образом разрешающее большинство основных загадок космологии. И хотя инфляция остается единственным кандидатом на фундаментальное теоретическое объяснение главных наблюдательных особенностей нашей Вселенной, она полагается на существование нового, введенного ситуативно скалярного поля, придуманного исключительно для того, чтобы породить инфляцию, и точно настроенного на то, чтобы запустить ее, когда ранняя Вселенная только начала остывать после

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×