С другой стороны, если атом нейтрален (не обладает электрическим зарядом), он остается в стороне от магнитных взаимодействий. При его движении поле не создается, и он не поддается воздействию сил в пределах поля. Из-за этого электрическая и магнитная силы (объединяемые термином «электромагнитная сила») во Вселенной оказывают намного меньшее влияние на формирование галактик и планет, чем гравитация. Если обратиться к цифрам, то выяснится, что электромагнитная сила на 39 порядков больше силы гравитации. И все же на больших расстояниях Вселенная нейтральна и подчиняется только силам гравитации.
Под воздействием высоких температур в звезде атомы лишаются электронов и превращаются в множество движущихся заряженных частиц, образуя ее магнитное поле. Силовые линии такого поля проходят через окружающий газ и пыль в протопланетном диске. Степень их воздействия зависит от количества заряженных частиц в диске.
Излучаемая звездой энергия отрывает электроны от атомов в диске, и в результате образуются заряженные частицы газа и пыли, которые становятся чувствительны к магнитному полю. Магнитные силы заставляют частицы переходить на другие орбиты, ускоряя процесс аккреции на звезду. Достаточно убрать магнитное поле, и скорость направленного к центру газового потока резко упадет. В непосредственной близости от звезды уровень влияния излучения на диск достигает максимального значения. В результате образуется множество заряженных частиц, которые взаимодействуют с магнитным полем. Но уже на расстоянии около 0,1 а.е. энергия звезды с трудом проникает через газ к центру диска. Число заряженных частиц падает, и газ перестает испытывать воздействие магнитного поля.
Для обозначения области, в которой магнитные силы перестают действовать, используют жутковатый термин «мертвая зона». Газ в пространстве между звездой и границей мертвой зоны быстро перемещается к центру, тогда как газ внутри мертвой зоны движется медленнее. В результате образуется своего рода затор, и плотность газа на границе мертвой зоны увеличивается. Вместе с плотностью растет и давление, что приводит к изменению сил, воздействующих на газ в этой точке диска. Благодаря этому газ начинает двигаться по орбите с той же скоростью, что и каменистые тела, то есть последние перестают испытывать сопротивление встречного ветра. Теперь, когда ничто не тормозит их и не заставляет двигаться к звезде, эти камни собираются у края мертвой зоны и начинают сталкиваться, обеспечивая рождение суперземли.
В результате изменений в характеристиках газового потока вокруг растущей суперземли планета оказывается в ловушке, что приводит к остановке миграции первого рода. То есть, вместо того чтобы нестись к (находящейся в опасной близости) звезде, планета может продолжать увеличиваться в размерах до появления разрыва в газовом диске. Затем должна начаться миграция второго рода, но к этому моменту суперземля уже настолько массивна по сравнению с газом и настолько близка к звезде, что сопротивления газа недостаточно, чтобы сдвинуть ее. Независимо от перемещений планеты разрыв обеспечивает проникновение излучения звезды в диск. Пыль и газ теряют электроны, получая заряд и вступая во взаимодействие с магнитными полями. Рядом с планетой образуется мертвая зона, граница которой движется в противоположную от звезды сторону мимо созданного планетой разрыва. На новой границе мертвой зоны начинается формирование следующей суперземли. Таким образом, после рассеивания газового диска может остаться несколько суперземель, движущихся по орбитам вокруг звезды. Описанный сценарий очень похож на то, что мы видим рядом со звездой Кеплер-11.
Идея конвейера по производству суперземель, главным механизмом которого является накопление твердых тел на границе мертвой зоны, кажется многообещающей, но в системе Кеплер-11 осталось еще немало сюрпризов.
Объединив результаты измерения масс с данными о размерах, полученными при наблюдении за прохождениями, исследователи выяснили, что ни одна из планет в системе Кеплер-11 не является каменистой. Исходя из значений плотности было сделано предположение, что у них толстые атмосферы, на которые приходится половина объема планеты. Единственным исключением является планета Кеплер-11 b, которая находится ближе всего к звезде: более высокая плотность указывает на больший размер ядра, занимающего две трети объема планеты. Однако даже такая газовая атмосфера все равно намного больше, чем у землеподобного мира. Все планеты в системе Кеплер-11 — мини-нептуны.
Поэтому любое объяснение процесса образования суперземель с учетом результатов наблюдений должно допускать возможность формирования как крупных каменистых планет, так и небольших газовых гигантов. Отсюда вопрос: могла ли планета, находясь так близко к звезде, приобрести толстую атмосферу мини-нептуна? Оказывается, что проблема не в том, как захватить достаточно газа, а в том, как остановить этот процесс.
Формирующаяся новая планета может накапливать атмосферу, втягивая газ из окружающего пространства, вплоть до того момента, когда газ протопланетного диска рассеивается. На коротких орбитах в области с большим количеством планетезималей процесс формирования суперземель должен протекать очень активно, легко укладываясь в миллион лет. Таким образом, у них остается предостаточно времени для аккреции такого объема газа, который характерен для мини-нептунов. Более того, процесс может зайти слишком далеко, и вместо мини-нептуна может появиться горячий юпитер.
Ранее считалось, что массивность горячих юпитеров исключает возможность их формирования вблизи звезды. Но не было ли это допущение поспешным? Не означает ли возможность массового перемещения строительного материала во внутренние области диска, что в конечном итоге мы получим миры размером с Юпитер?
С ростом Юпитера во внешней области Солнечной системы его гравитация достигла значения, обеспечившего захват большого объема газа. В какой-то момент планета стала настолько тяжелой, что в ее атмосфере начался процесс неудержимого коллапса: по мере опускания газа к «поверхности» Юпитера атмосфера продолжала непрерывно сжиматься. Наконец под действием гравитации планеты в газовом диске образовался разрыв, и процесс прекратился. К этому моменту успел сформироваться большой газовый гигант. На первый взгляд процесс кажется неотвратимым. Но, как оказывается, существуют факторы, которые способны остановить его.
Учитывая, что молодая суперземля формируется из скоплений каменистых тел, перемещенных к мертвой зоне во внутренней части системы, в ее атмосфере содержится много пыли. Это затрудняет охлаждение газовой оболочки планеты, так как частицы пыли блокируют излучение (говоря техническим языком, атмосфера имеет высокую непрозрачность). При более высокой температуре газ менее подвержен действию гравитации планеты, в результате чего неудержимый коллапс происходит позже, уже после рассеивания газового диска. Планете удается заполучить толстую атмосферу, но до утопающего в газах горячего юпитера ей все-таки далеко.
Решающим фактором превращения суперземли в гигантскую землеподобную планету или в небольшой газовый мир может быть протопланетный диск. При большей массе диска процесс формирования суперземли происходит быстрее, и времени для захвата атмосферы остается больше. В более легких дисках формирование суперземли может продолжаться вплоть до момента рассеивания. Поэтому такие планеты являются каменистыми и имеют более тонкие атмосферы.
Процесс образования планет там, где мы их сейчас наблюдаем, называют формированием in situ («на месте»). Если