называют тектоническими плитами. Под ними — мантия. Несмотря на кажущуюся монолитность, в масштабе геологического времени, измеряемого миллионами лет, мантия на самом деле движется как жидкость с чрезвычайно высокой вязкостью. Выступая в качестве своего рода конвейерной ленты, она заставляет перемещаться тектонические плиты. Когда две плиты расходятся, находящаяся под ними мантия выходит на поверхность и остывает, образуя новый участок коры. Там, где плиты соскальзывают друг под друга, старые более толстые участки коры начинают плавиться, в результате чего в таких переходных зонах часто образуются вулканы. Перемещения коры и мантии обеспечивают циркуляцию атмосферы и питательных веществ в пределах планеты, а также способствуют генерации магнитного поля. Но стоит заменить нашу мантию на алмазную, как эта важнейшая активность будет существенно затруднена.

Алмаз имеет очень высокую вязкость, то есть жидкостное трение, определяющее скорость течения материалов. Вязкость сиропа больше, чем вязкость воды, а вязкость алмазной мантии приблизительно в 5 раз больше вязкости силикатного слоя. На планете, где доля углерода превышает 3%, сдвинуть мантию настолько трудно, что рассчитывать на тектонические сдвиги не приходится — разве что на скрежет.

Из-за отсутствия тектонических процессов поверхность планеты превратится в неподвижный панцирь, что серьезно затруднит образование вулканов. На первый взгляд, в сокращении числа гор, которые могут взорваться в любой момент, нет ничего плохого. Но на самом деле планета лишается важного фактора формирования атмосферы. В итоге мы получаем инертное тело с горой драгоценных камней, но без воздуха.

Присутствие графита в коре также может способствовать чрезмерному нагреву поверхности планеты. Даже на такой же орбите, как у Земли, графит из-за своего темного цвета не сможет отражать солнечный свет — он будет его поглощать. Подобно огромному черному пикапу на открытой парковке где-нибудь во Флориде[12], планета будет нагреваться намного сильнее зелено-голубой Земли. А значит, даже если ей удастся каким-то образом заполучить океаны, удержать воду в жидкой форме на поверхности будет очень трудно.

Таким образом, даже соблазн перед красотой драгоценных камней вряд ли способен сделать углеродный мир привлекательным местом для жизни.

Не успела планета 55 Рака e официально прослыть углеродным адом, как само существование источника всех ее бед было поставлено под сомнение. Проблема в том, что измерить соотношение C/O (углерода к кислороду) не так-то просто. Дело в том, что вычисление содержания кислорода в звезде представляет собой особо сложную задачу.

Звезда состоит из невероятно горячего плотного ядра, окруженного чуть менее горячей атмосферой из разреженного газа. Температура солнечного ядра может достигать 15 000 000 °C и более, тогда как температура внешнего слоя звезды составляет 5500 °C. Эту внешнюю атмосферу звезды называют фотосферой. Температура фотосферы все еще достаточно высока, но уже не настолько, чтобы атомы не могли удерживать свои электроны. Эти электроны выстраиваются на лестнице неравноотстоящих энергетических уровней. Подвергаясь исходящему от ядра излучению, атомы поглощают длины волн с энергией, достаточной для перехода внешнего электрона на одну из более высоких энергетических ступеней. Поглощаемые длины волн зависят от занимаемых электронами энергетических уровней, а значит — от типа атома. Изучив свет звезды и определив, какие длины волн в нем отсутствуют, можно понять, какие атомы входят в ее состав.

Ситуация осложняется, когда два разных атома поглощают практически одни и те же длины волн. В этом случае их трудно отличить друг от друга, что приводит к неопределенности в оценке количества атомов обоих типов. Что касается измерения соотношения C/O для 55 Рака, проблема заключалась в том, что длина волны, обычно получаемая при измерениях для кислорода, была чрезвычайно близка к соответствующему значению для никеля. В 2013 г. был проведен повторный анализ собранных о звезде данных. На этот раз было решено не полагаться на разницу между основными длинами волн для кислорода и никеля, а провести сравнение трех разных длин волн, которые могу поглощать атомы кислорода, и теми, которые поглощают атомы никеля. Исследователи пришли к выводу, что соотношение C/O у данной звезды ниже первоначально полученного значения 1,12, а именно около 0,78. Углерод замещает кислород в соединениях кремния в том случае, если значение C/O в газе протопланетного диска составляет приблизительно 0,8. Таким образом, в вопросе о природе 55 Рака e возникла неопределенность. Чтобы узнать, является ли этот мир углеродным, требовались крайне сложные наблюдения.

Спасти ситуацию и подтвердить гипотезу о жутком углеродном мире могло бы одно обстоятельство, осложняющее общую картину. Хотя в момент рождения звезда и протопланетный диск имеют одинаковые состав атомов, со временем твердые частицы в диске меняются.

Рассматривая в главе 1 процесс образования нашего протопланетного диска, мы отмечали, что материал частиц пыли зависит от температуры. В окрестностях Солнца присутствуют соединения железа и силикаты, которые улетучиваются только при высоких температурах. Летучие молекулы, такие как вода, сохраняют форму газа вплоть до снеговой линии, за которой температура падает. Однако этот переход из газового состояния в твердое не происходит мгновенно. Исходя из возраста падавших на Землю метеоритов можно сделать вывод, что конденсация твердых частиц, из которых формировались наши планеты, не была одномоментным процессом, напротив, она продолжалась в течение 2,5 млн лет. Этого времени достаточно, чтобы в результате изменения условий в протопланетном диске начался процесс формирования богатых углеродом планетезималей.

Когда значение C/O ниже 0,8, углерод сохраняет газообразную форму в значительной части протопланетного диска. Кремний захватывает кислород, в результате чего образуются силикатные частицы, а углерод остается нетронутым. Таким образом, содержание кислорода в газе постоянно снижается, а значение соотношения C/O начинает расти. Поэтому дальнейшее формирование твердых частиц происходит в газе с такой высокой долей углерода, что большинство из них оказываются частицами графита и карбида кремния.

Это означает, что, даже если первоначально значение C/O в газе протопланетного диска не превышает магические 0,8, возможность формирования большого количества твердого углерода в последующем все равно существует. Согласно расчетам, даже такого маленького значения, как C/O = 0,65, достаточно для образования богатых углеродом планетезималей. Так что 55 Рака e вполне может быть углеродным миром. И не она одна.

Судя по значениям C/O в близлежащих к нам звездных системах, у трети звезд, рядом с которыми есть планеты, это соотношение может превышать 0,8. А значит, там могут быть коварные углеродные миры. И даже если из-за сложности оценки содержания кислорода это значение завышено, доля углеродных планет все равно может быть весьма значительной. Рядом с двумя звездами, которые, как показывают измерения, отличаются исключительно высоким значением C/O, были найдены газовые гиганты. HD 189733 располагается на расстоянии 63 световых года от нас в созвездии Лисичка. Газовый гигант рядом с ней — это горячий юпитер с периодом обращения 2,2 суток. HD 108874 находится в 200 световых

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату