Карла Сагана «Контакт»; и она же была эффектно взорвана в финале одной из серий бондианы «Золотой глаз». При сканировании неба с частотой в полмиллисекунды в 1982 г. огромной антенне обсерватории все-таки удалось обнаружить повторяющие импульсы, исходившие от пульсара-рекордсмена. Период вращения нового объекта составлял 1,558 миллисекунды, что соответствует ни много ни мало 642 оборотам в секунду. Это было в 20 раз быстрее пульсара в Крабовой туманности. Так был поставлен рекорд скорости вращения пульсара, который продержался еще четверть столетия.

Хотя открытие миллисекундного пульсара позволило ответить на вопрос о необычном источнике радиоизлучения, оно породило целый ворох новых проблем. Поскольку пульсары непрерывно испускают энергию в форме радиоволн и прочих видов излучения, с течением времени они постепенно замедляются. Поэтому молодые пульсары вращаются быстрее старых. Из этого должно было следовать, что, раз миллисекундный пульсар был самым быстро вращающимся из всех когда-либо наблюдавшихся, он должен был быть совсем молодым. Но данные говорили об обратном.

Если бы пульсар был обнаружен вскоре после рождения, вокруг него должны были бы присутствовать признаки взрыва гигантской сверхновой звезды, в результате которого она должна была бы сбросить свои внешние слои. Выброшенный умирающей звездой газ — так называемый остаток сверхновой — обычно виден в течение более чем 10 000 лет. Например, Крабовидная туманность — остаток от взрыва сверхновой звезды, превратившейся в пульсар. По оценкам, ее возраст составляет 960 лет. Новый миллисекундный пульсар должен быть намного моложе, но никаких признаков газового остатка вокруг него нет.

Еще более странным было то, что пульсар замедлялся недостаточно быстро. Согласно моделям изменения скорости пульсара, молодые пульсары должны терять скорость стремительно, а такой заводной волчок, как миллисекундный пульсар, должен затухать и того быстрее — всего лишь за несколько лет. Измерения скорости замедления пульсара показали, что она была намного ниже ожидаемой, а возраст объекта составляет 230 млн лет. То есть он был намного старше всех известных на тот момент пульсаров. Как мог пульсар, испускающий энергию в космос, быть одновременно и самым быстрым и самым старым? Как выяснилось впоследствии, все дело было в том, что он поглотил своего компаньона.

История миллисекундных пульсаров начинается с пары звезд, обращающихся вокруг общего центра масс в составе двойной системы. Удерживаемые вместе взаимным тяготением, эти звезды не похожи друг на друга: одна из них намного массивнее другой. Большой размер не прибавляет здоровья звезде, так как дополнительная масса ускоряет процесс сжигания запасов ядерного топлива. Поэтому более массивный из двух компонентов первым достигает конца обычного для звезд жизненного цикла и взрывается как сверхновая. Когда совсем рядом происходит взрыв такой колоссальной мощности, меньшая звезда рискует быть разорванной на кусочки. Но если ей все-таки удается выжить, она оказывается в паре с нейтронной звездой.

Несмотря на крошечный размер, нейтронная звезда остается невероятно тяжелой. Поэтому вторая звезда в системе продолжает испытывать на себе ее гравитационное притяжение, и обе они по-прежнему обращаются вокруг общего центра масс. Если магнитные полюсы нейтронной звезды оказываются направлены в сторону Земли, пучки ее радиоизлучения попадают по нашей планете и регистрируются как пульсар. Со временем пульсар начинает замедляться. Приблизительно за 100 000 лет радиосигнал пульсара ослабевает настолько, что обнаружить его уже невозможно. И пульсар замолкает. Однако масса пульсара при замедлении не меняется, так что ее звезда-компаньон продолжает движение по той же орбите. Но теперь уже она сама также приближается к концу своего жизненного пути.

Вокруг каждой из звезд есть участок пространства, в котором ее притяжение преобладает над притяжением звезды-компаньона — полость Роша. По сути, это понятие, схожее с понятием сферы Хилла, — для тех случаев, когда массы рассматриваемых объектов сопоставимы. По форме полости Роша похожи на слезинки, которые сходятся в одной точке своими узкими концами, а не на сферы вокруг звезд. В точке схождения гравитационные силы двух звезд уравновешивают друг друга подобно перемычке между двумя горными долинами. Достаточно сделать один шаг по направлению к одной из звезд — и ее гравитация притянет вас к ней. Сдвиньтесь в обратном направлении — и теперь уже ее компаньон затащит вас к себе.

Когда в меньшей из двух звезд заканчивается водород, она раздувается и превращается в красный гигант. Радиус звезды становится настолько большим, что она выходит за пределы своей полости Роша и втягивается в область притяжения нейтронной звезды. Этот выход за границы повторяет механизм образования хтонических суперземель из горячих юпитеров, описанный в шестой главе.

Как только внешние слои красного гиганта наваливаются на нейтронную звезду, она получает толчок, который приводит к еще большему ускорению ее вращения. Под влиянием дальнейшего притока вещества красного гиганта-компаньона скорость вращения нейтронной звезды вырастает до невероятных значений, измеряемых миллисекундами. Соприкасаясь с поверхностью нейтронной звезды, вещество нагревается до колоссальных температур, достигающих 10 млн градусов. Такое фантастически горячее вещество испускает не инфракрасное, а более высокоэнергетическое рентгеновское излучение. Для обозначения источников такого излучения, фиксируемого на Земле, используют промежуточный термин маломассивные рентгеновские двойные системы.

В конце концов нейтронная звезда полностью вытягивает внешние слои красного гиганта, который превращается в белый карлик, обращающийся вокруг миллисекундного пульсара. Чтобы обратить внимание на главную особенность миллисекундных пульсаров, а именно увеличение скорости вращения в результате воздействия внешнего объекта, их называют раскрученными пульсарами. Точность, с которой они испускают импульсы, еще выше, чем у обычных пульсаров. Степень точности настолько велика, что на нее может повлиять даже крошечный объект. И последствия этого влияния можно наблюдать.

Самая первая экзопланета

51 Пегаса b часто называют первой экзопланетой, открытой астрономами. В действительности этот горячий юпитер был первой планетой, найденной в системе с солнцеподобной звездой. Статус самой первой экзопланеты, обнаруженной людьми, делят два мира, обращающиеся вокруг миллисекундного пульсара PSR B1257+12.

История открытия PSR B1257+12 необычна тем, что началась она не с ввода в строй новейшего телескопа, а с поломки старого. В 1990 г. возникла необходимость провести ремонтные работы на радиотелескопе «Аресибо» — том самом, с помощью которого был найден первый миллисекундный пульсар. Незадолго до того в его конструкции были обнаружены трещины. Брать на себя риск эксплуатации неисправного телескопа никто не собирался, особенно после одного инцидента: за несколько лет до того из-за повреждения элементов конструкции произошло обрушение 90-метрового радиотелескопа в американском городке Грин-Бэнк. «Аресибо» мог продолжать работу и во время ремонта. Единственное ограничение было связано с тем, что он должен был оставаться в одном положении, то есть он не мог поворачиваться вслед за объектом, отслеживаемым в ночном небе. В результате перечень проектов, в которых он мог использоваться, существенно сузился, и спрос на услуги телескопа сильно упал. Но нашелся человек, который

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату